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Preface

The objective of this investigation has been to examine in general the

conditions which can lead to nonsynchronous precession in a rotor sys-

tem. Nonsynchronous p_cession, which has bften been referred to as

shaft whirling, oil film whirl, resonance whip, half-frequency whirl, is a
self-excited motion which can be caused by several factors such as inter-

nal rotor friction and fluid film bearings. In the analysis, general

equations of motion of the extended Jeffcott rotor are developed to
include rotor and foundation flexibility, internal and external damping,

rotor and bearing mass, and fluid film bearings. The rotor threshold of

stability is determined for the system by Routh's criterion. The various

stability charts developed in the thesis reveal that a considerable im-

provement in the rotor stability characteristics can be obtained by

proper foundation design.

To represent the rotor motion above and below the threshold of

stability, the equations of motion were programed on the analog com-

puter and traces of the rotor orbits were obtained for a number of runs.

The theoretical results were compared to various experimental observa-
tions on rotor whirl.

Chapter 1 contains the introduction and description of the system.

Chapter 2 discusses the background and state of the art in rotor dynamics

as related to rotor stability. Some of the major contributions of Jeffcott,

Newkirk, Hagg, Poritsky, Pinkus, and others are discussed.

Chapter 3 presents an analysis of the single-mass Jeffcott rotor con-
sidered as a conservative and nonconservative system. The results are

compared to the analysis of Kane on rotor whirling and also to the work

of Soderberg on secondary critical speeds. Chapter 3 shows that even

light damping forces can considerably alter the motion of the system and

shows also that the problem of nonsynchronous rotor whirling cannot be

analyzed from the standpoint of a conservative system.
In Chapter 4 the general equations of motion of the extended Jeffcott

rotor are developed to include rotor and foundation flexibility, foundation

damping, internal and external rotor damping, bearing mass and rotor

unbalance. Chapter 4 discusses and explains some of the early work

by Newkirk on rotor instability in 1924. The results of Chapter 4 are

also compared to the experimental findings of Kushul' on instability

caused by internal rotor friction.



Chapter5 discussesin generaltheconditionsrequiredfor stability
in linearsystem.Thehydrodynamicfluidfilmcharacteristicsforsmall
displacementsare relatedto the generalstability criterion. The
influenceof lubricantcompressibilityandnonlinearbearingforceson
stabilityarealsodiscussed.

Chapter6 presentsan analysisof the extendedJeffcottmodelto
includefluid film bearingcharacteristics.Chapter6 showsthat the
one-dimensionalplanaranalysisapproachforcriticalspeedsisinadequate.

Chapter7 containsa discussionof the majorassumptionsandcon-
clusionsof the investigation.

This is a report of research performed under Contract NAS 3--6473,
administered by Lewis Research Center.
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Chapter 1

Introduction and Statement of

the Problem

!.i INTRODUCTION

With the increase in performance of high-speed rotating machinery

in various fields such as process equipment, auxiliary power machinery,

and space applications, the engineer is faced with the problem of

designing a unit capable of smooth operation under various conditions

of speed and load. As an example, turborotors in the auxiliary power

systems of space applications must be designed to perform satisfactorily

under adverse load conditions ranging from the high acceleration forces

encountered at takeoff to the zero-gravity load condition encountered in

orbit. In many of these applications the design operating range may

be well above the rotor first critical speed, t Under these circumstances

the problem of insuring that a turbomachine will perform with a stable,

low-level amplitude of vibration is extremely difficult.

Under certain conditions of high speed and light loading, a situation

can arise in which the rotor system is capable of orbiting or precessing

in its bearings at a rate less than the total rotor angular speed. This

nonsynchronous precessive motion, which has often been referred to in

the literature as whirling or whipping, can lead to destruction of the rotor

if the whirl threshold speed is exceeded. 2 This whirl motion is consider-

ably unlike the orbiting obtained at a rotor critical speed. If the rotor

damping and balancing requirements are met, it is possible to safely pass

through a rotor critical speed, 3 whereas the occurrence of nonsynchro-

nous precession will limit the operating speed of a rotor.

Nonsynchronous rotor precession is a self-induced vibration 4 and has

sometimes been described as "sustained transient motion." In general,

a self-excited or serf-induced vibration is defined as a phenomenon in

See Secs. 2.3 and 3.21 for discussion and definition of rotor critical speed.
_Fig. 44 of Ch. 5 is an illustration of rotor behavior below and above the whirl threshold

speed. A further increase in speed above the threshold would lead to bearing failure.
3See Fig. 5.
4See J. G. Baker, "Self-Induced Vibrations," Trans. ASME, Vol. 55, pp. 5-13.
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which the excitation forces inducing the vibration are controlled by the
motion. This is in contrast to a forced vibration in which the externa_

excitation is a function of time only. There are several very common

examples of vibration which may be considered under the classification
of self-excited motion. Some of these are:

]. Aerodynamic wing flutter.
2. Vibration of transmission lines.

3. Sway or nosing of streetcars and locomotives.

4. String or blown musical instruments.
5. Pneumatic hammer of valves in air or water lines.

6. Vacuum tube oscillations.

With respect to the last item, the instances of self-excited motion are

of greater familiarity to the electrical engineer; hence the subject has
received considerable attention in that field. In the field of mechanical

engineering, particularly with respect to rotating machinery or mechani-
cal vibrations, the phenomenon has received less attention. As an

example, the excitation forces usually associated with rotating machinery

are alternating and impulse forces such as caused by unbalance and

shock. These force systems are expressed as explicit functions of time

and are unaltered by the mode of vibration of the system.

Examination of Eqs. (2.5) and (2.6), which apply to an unbalanced

flexible rotor with a single mass, reveals that as the unbalance is reduced

(_'-'* 0), the rotor deflection will approach zero and hence the forces

transmitted to the bearings will be zero. Thus, by properly balancing

a rotor, it is possible to run through the first critical speed with little

noticeable change in the rotor amplitudes. For large turbines, where

good balancing can be achieved, this has been observed. In some

instances it was found necessary to add additional unbalance in order to

excite the critical speeds.

With a self-excited whirl instability, unbalance is of minor importance.

(It will, however, affect the whirl threshold speed by changing the

dynamic loads exerted on the bearings and hence the bearing character-

istics.) At the onset of whirl, the rotor behavior is unlike a critical speed

resonance where the amplitude of motion builds up to a maximum value

and then decreases. At the inception of nonsynchronous whirling, the

rotor motion will continually build up with speed, since the self-excitation

increases the energy transfer into the system with increased speed. If
the rotor speed is increased appreciably above the whirl threshold speed,

the large orbiting obtained will usually result in rotor or bearing failure.

Thus, the problem of maintaining smooth rotor performance and satis-
factory operation can be of a much more serious nature when encounter-

ing self-excited whirling than with a critical speed resonance.

Rotor whirling can be caused by several mechanisms such as hydro-

dynamic fluid film bearings, internal rotor friction, magnetic fields, and
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turbine torques. The most common case of self-excited whirling is

that caused by the fluid film bearings. Bearing specialists have given

various titles to this phenomenon such as half-frequency whirl, oil-film

whirl, resonant whip, or oil whip. The instability caused by internal

friction damping or rotary damping is very similar in nature to that

caused by the oil-film bearings. 5 This phenomenon has been variously

labeled as "shaft whirling" or "whip." The instabilities caused by

each of the above cases occur at speeds only above first-system reso-

nance frequency. Therefore, we shall consider a high-speed rotor as

one which operates above the first critical speed.
Dr. Newkirk in 1924 was the first person to demonstrate that non-

synchronous, unstable motion could exist in a high-speed rotor. (For a
more detailed discussion on the work of Dr. Newkirk and other investi-

gators, see Ch. 2.) His methods used to observe the rotor motion were

crude, since at that time electronic capacitance or inductance probes

were not available. Today considerable interest has developed in the

field of high-speed rotor systems. This is due not only to higher unit

speeds but also to better electronic instrumentation which allows the
researcher to observe the actu, al rotor behavior. For example, the rotor

oscilloscope trace of Fig. 47 shows that at 19 000 rpm, a component of

self-excited whirling is created in addition to the steady-state syn-

chronous orbit. The resulting whirl orbit may be viewed as the

combination of the two rotating vectorial components. The occurrence

of this typical oscilloscope pattern is an indication that the whirl thresh-

old speed has been reached. If the speed were increased much above

this instability threshold, rotor destruction would have resulted.
The above discussion serves to illustrate some of the fundamental

differences between stable and unstable rotor motion. It also points

out several mechanisms which can cause unstable motion. The de-

signer is deeply concerned with the problem of rotor stability and also
with the closely allied problems of rotor critical speeds and bearing

force transmission.

1.2 DESCRIPTION OF THE SYSTEM

The usual high-speed rotor may be considered as a continuous elastic

body with variable mass and inertia properties along its length as shown

in Fig. 1A. The shaft usually has attached to it such components as

turbine wheels, impeller disks, etc. If the axial dimension of each rotor

component is small in comparison to the overall length of the rotor,

then these components may be treated as concentrated masses with a

polar moment of inertia equivalent to that of the original component.

5See Sec. 2.4, Nonsynchronous Precession-Internal Friction Damping, of Ch. 2 for
further discussion.
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FIGURE1.-Schematic diagram of a typleal turbo rotor.

If, in addition, the mass of the attachment is large in comparison to

the shaft mass between two adjacent stations, then the shaft weight

may be eonsidered as also concentrated at the weight stations. The

rotor may then be represented as a massless elastic shaft to which is

attached n-mass stations as shown in Fig. lB. If the polar moment

of inertia of eaeh section is ignored, then the stations may be consid-

ered as eoneentrated masses (Fig. 1C), rather than as masses distributed

in the plane of the rotor element perpendicular to the shaft axis of
rotation.

Figure 2 represents a typical cross section of the idealized rotor taken

at the nth mass station. The position vector of the nth mass center is

given by

d
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• P.= 8b + 8_ + )+

where
.--.>

8b = vectorial foundation or bearing housing deflection
.--.>

8j = vectorial journal deflection

_r n)= vectorial rotor deflection at the nth station

_-_n)---displacement vector of the mass center from the rotor elastic

center

The total angular velocity of the system is given by the time rate of

change of a line fixed in the disk and will he represented by oJ. By ex-

amination of the configuration of Fig. 2, the following definitions of whirl

ratio may he stated:

Yo

t

M

\
\

FICURE 2.--Vectorial representation of a cross section of a deflected rotor.

Xo
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_b/to = shaft whirl or "whip" ratio

b
--=journal whirl ratio
to

Od

--= system whirl or precession ratio.
to

For tile case of steady-state synchronous precession investigated by

Tang and Trumpler, "°z_ the configuration formed by O, Oh, Oj, C, M is

constant and precesses with an angular velocity equal to the rotor angu-
lar velocity to.

!.3 STATEMENT OF THE PROBLEM

The problem of the present investigation is to determine under what

conditions nonsynchronous precession can develop in a rotor system

depicted by Fig. 2 and also to determine the approximate characteristics
of the rotor motion.



Chapter 2

Background and State of the Art

BACKGROUND

To illustrate the important areas of investigation that need to be

undertaken in this field, a brief summary of the advances of some of the

major investigations will be discussed.

2.1 INDIFFERENT EQUILIBRIUM

The first recorded article on the subject of rotor dynamics was pre-

sented in 1869 by Rankine, (Ts_who introduced the elementary concep-

tion of indifferent rotor equilibrium. Rankine examined the equilibrium

conditions of a frictionless, uniform shaft disturbed from its initial posi-

tion. Because he neglected the influence of the Coriolis force, he

concluded that: motion is stable below the first critical speed, is neutral

or in "indifferent" equilibrium at the critical speed, and unstable above

the critical speed.' During the next half century, this analysis led engi-

neers to believe that operation above the first critical speed was impos-

sible. It was not until 1895 that DeLaval demonstrated experimentally

that a steam turbine was capable of sustained operation above first

critical speed. Investigators remained at a loss to explain why they

were able to achieve high-speed operation in certain cases. Rotating

equipment manufacturers were unable to explain why successful opera-
tion could be attained with some units but not with others of similar

construction.

With the advent of the steam turbine in the last century and the

gradual transition from low-speed reciprocating powerplants to higher

speed rotary-type units, it soon became apparent to manufacturers

that an understanding of the dynamic behavior of these systems was

necessary to insure satisfactory rotor performance. As the steam tur-

bine progressed in efficiency around the turn of the century and the

design operational speeds were increased, these problems became

l The neglect of the Coriolis term has caused several writers to deduce a fictitious critical
condition at 1/N/_ times the critical speed.



8 DYNAMIC STABILITY OF ROTOR-BEARING SYSTEMS

greatly accentuated. It became much more difficult to design a rotor

to run smoothly under all operating conditions.

2.2 ROTOR CRITICAL SPEED--NATURAL LATERAL FREQUENCY

To understand why some units would operate successfully while

others of similar design would fail, some of the leading scientists of

England were engaged to investigate the problem. Starting with the
work of Rankine {7s_ in 1869, the extensive studies by Dunkerley ua_ in

1894, and Chree {9_in 1904, it was shown that a rotor has certain speed

ranges in which vibrations of large amplitude could develop. These

speed ranges, which became known as "critical speeds," could cause

the unit to run roughly, transmitting large forces to the bearings and

producing large deflections of the rotor. If the running speed of a unit

happened to coincide with the rotor critical speed, the large forces

transmitted through the bearings quite often caused bearing failure,

or the resulting excessive rotor deflections would wipe out the internal

labyrinth seals causing rotor failure, or at least a reduction in the unit

efficiency due to the increase in internal leakage across the seals.

Dunkerley, who made the major contribution at the time, analyzed

the rotor dynamic behavior by considering the rotor as a flexible elastic

body and the bearings as simple supports. (During this period, the

hydrodynamic theory of lubrication was just beginning to be developed.)

By neglecting rotor unbalance and damping, he showed that the problem

of a whirling rotor could be replaced by the problem of finding the natural

lateral frequencies of vibration of an equivalent beam on simple sup-

ports. Under the above assumptions, these natural lateral frequencies

would correspond to the rotor critical speeds. He then postulated that

if the rotor had any unbalance (which is unavoidable), it would excite

these natural frequencies causing high vibrational amplitudes if the

operating range should correspond to any of these values. As a result

of his investigation, manufacturers attempted to construct their rotors

sufficiently stiff so that the first natural lateral frequency of vibration

would be sufficiently above the operating range. In this way the unit

would operate as a stiff 2 rotor; that is, below the first critical speed.

As the design speed of machinery was continually increased to gain

economic advantage, it was found that it was difficult to design a rotor

with the operating range below the first critical speed. Accomplishing
this entailed the construction of heavier rotors which meant larger shaft

diameters. This in turn caused higher bearing loads, necessitating

an increase in the accuracy of rotor balancing.

A unit that operates below the first critical speed is commonly referred to as a "stiff"

rotor, and one that operates above first critical is referred to as a "'flexible" rotor. This

nomenclature used in past literature has caused some confusion, since an unbalanced

rotor will deflect at any speed due to centrifugal forces.
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SYNCHRONOUS WHIRUNO OF A SINGLE-MASS ROTOR -- JEFFCOI"r

MODEL

In 1919, H. H. Jeffcott, (4°) a noted English dynamicist, was asked to

engage in the problem of rotor dynamics, in particular to examine the

effect of unbalance on the whirl amplitudes and forces transmitted to

the bearings. He too, like Dunkerley, neglected the effect of the bear-

ings on the system, but considered a general two-dimensional problem

including damping on the rotor. To further explain what is meant by

critical speed and as a subsequent introduction to the terminology of

"whirl instability," we shall briefly examine Jeffcott's model and his

conclusions. Figure 3 represents a flexible rotor composed of a cen-

trally located unbalanced disk attached to a massless elastic shaft.

The elastic restoring force acting at C is given by

F = 8K (2.1)

where

K = shaft stiffness coefficient

8=deflection of the shaft centerline C from the bearing line of

centers O.

The angular speed to of the rotor is assumed to be constant and is

represented by the time derivative of angle formed by the line CM

fixed in the disk with respect to the fixed reference axis OX. At this

point no assumption can be made concerning the angular speed of the
rotor centerline OC. Jeffcott arrived at the conclusion that the center

of the rotor also revolves or precesses at the same angular velocity as

the disk. That is, for a particular speed, the rotor center moves at a

constant angular velocity to, describing a circle of radius 8. This condi-

tion of the rotor centerline moving with the same angular speed as the

mass center is defined as "synchronous precession."

From the examination of this simple model, we are now in a position

to define "whirling" in general. It is defined as the angular velocity

of the rotor center, or the time derivative of angle _b. The whirl ratio

will be defined as the ratio of _ to the total angular speed of the rotor to.

We will refer to nonsynchronous precession as the condition when

_b # to. With the assumptions that Jeffcott used, it is not possible to

arrive at a steady-state condition where (b # to; that is, synchronous pre-

cession is the only possible solution. He did point out, however, the

important conclusion that the position of the mass center is not stationary

with respect to the rotating reference frame R, but is dependent upon
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FIGURE 3.- Single-mass flexible rotor.
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the ratio of rotor critical speed and the damping on the rotor. This phase

"angle relationship is given by (see Sec. 3.2]).

'2"2 
where

/3 = phase angle, degrees

M= rotor mass, lb-sec2/in.

to = angular speed of rotor rad/sec

tocR = rotor critical speed = V'K/M, rad/sec

C = damping coefficient, lb-sec/in

Upon the examination of the phase relationship equation for various

speeds, we can arrive at three important limiting conditions (see Fig. 4):

First,
to _ toCa fl_0

The mass center is in phase with and rotates about the rotor centerline.

Second,
71"

to=tocR /3=_

The mass center is leading the rotor centerline.

Third,

to >_> toCR /3 _ 77"

The mass center is 180 ° out of phase with the rotor center and the

point C rotates about the mass center.

If we examine the steady-state radial forces acting on the shaft elastic

centerline at point C, that is, equate the centrifugal forces to the elastic

restraining forces (neglecting damping), we arrive at the following

equation

Mto2(8 + eg cos/3) = K8 (2.3)

where eu = displacement of rotor mass center from shaft elastic center-

line (see fig. 4). At the critical speed, when to = toca, then/3 = rr/2 and

the above equation reduces to

Mto2R8 = K8 (2.4)

From the above equation, we arrive at the conclusion that at to = toCR,

the deflection of the rotor centerline is indeterminate, or that for any

given value of deflection 8, the elastic restoring forces will exactly bal-
219-7200-66--2
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FIGURE 4.- Phase relationships.

ance the centrifugal forces. This had led to the concept of"indifferent

equilibrium" for the calculation of rotor critical speeds. This concept

is equivalent to Dunkerley's original postulation that the rotor critical

speeds are exactly equal to the natural lateral frequencies of vibration.

Since, in the physical system, damping is always present, the deflection

8 and thus the forces transmitted to the bearings remain bounded.

Hence the concept of "indifferent equilibrium" yields the correct value

of the critical speed only for the limiting condition when the rotor damp-

ing approaches a very small value (see Eq. (3.21)). When damping of

the motion of the volume center is considered, the deflection is given by

17+( c
(2.5)

and the force transmitted to each bearing is given by

OOCR2 1 =+ C 2

(2.6)

If we plot this function, we see that the transmitted bearing forces

increase with speed and reach a maximum value and then diminish.

•A dimensionless plot of the force function is given in Fig. 5. We are

now able to define the true critical speed of the rotor as the speed at
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which the force amplitude transmitted to the bearings is a maximum.

"This is mathematically expressed as the speed corresponding to the

point where dF/doJ is zero. Of particular interest is that as the rotational

speed increases above the rotor critical speed, the bearing forces dimin-

ish to a constant value of Ke,/2, which is a function of only the rotor

stiffness and the displacement of the mass center from the volume center

(a measure of the rotor unbalance).

As a result of Jeffcott's splendid analysis of a relatively simple model,

it became apparent to turbomachinery designers that it was possible,

and in many ways even desirable, to operate above the first critical

speed. By examination of this simple model, a designer gains consider-

able insight into the behavior of more complex systems. For example,

examination of the rotor response curves of Fig. 5 shows why operation

near a critical speed should be avoided if the rotor is lightly damped.

It also demonstrates that if the system is critically damped, it is pos-

sible to pass through the critical-speed region without encountering

excessive rotor amplitudes. 3

3

iv.
o -
I-

t_ 2
t2t

F-
..J
ft.

¢[

o

o

UN DAMPED J

CRITICAL SPEED

,/
I

J

I

0.5

I ,i
A-

_Dafa+ (I-ft_)a

I ,
WHERE "D,, KsOJcR;f=_R --

I i
f_-DAMPED CRITICAL SPEED

O - -ZERO DAMPING-Acr - ¢D

L-- CRITICALLY DAMPEDt

NO OBSERVED CRITICAL SPEED

I I t I

0 I.O 1.5 2.0 2.5 3.0

ROTOR SPEED RATIO, (,VOJcR(DIM)

FIGURE 5.--Rotor amplitude for various damping values.

3 To speak of a rotor as "vibrating" or having high vibrational amplitudes is misleading

because the rotor motion is not confined in a plane. Only in the limiting case as the unbal-

ance goes to zero is it possible for the rotor to vibrate in a plane.
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It is of interest to note that the behavior of this simple model has

not been fully explored. In Chapter 3 are presented the complete gov- "

erning equations of motion of the Jeffcott model. An investigation of

these equations has been undertaken to analyze transient behavior

and the problem of whirling in general.

Robertson (s5) in 1935 conducted an experimental and theoretical

investigation on the transient whirling of the single-mass Jeffcott rotor.

Robertson observed that the rotor elastic centerline could possess both

forward and backward precessive motion depending upon the initial

conditions. The influence of external damping caused the transient

motion to die out until only the steady-state synchronous motion caused

by rotor unbalance remained. He observed that only in the case where

the deflection of the rotor was sumcient to cause it to strike the guard

ring was it possible to develop a sustained transient motion.

2.4 NONSYNCHRONOUS PRECESSION--INTERNAL FRICTION DAMPING

The 1920's saw a trend reversing the rotor-design concepts of the

previous decade. Turbine and particularly compressor and pump

manufacturers were beginning to construct lighter weight rotors with

lower critical speeds designed to operate well above the first critical

speed. As more manufacturers went to the "flexible" rotor design,

several encountered severe operating dil_culties when operating well

above the first critical speed. These problems at first were attributed

to the lack of proper balancing. In the United States at this time,
General Electric encountered a series of failures of blast furnace com-

pressors designed to operate above the first critical speed. These ma-

chines were subject to occasional fits of more or less violent vibration of

unknown origin. During these disturbances the shaft would vibrate at a

low frequency which in some cases could be visually observed. The

phenomenon was therefore called by shop men and engineers "shaft

whipping."

Dr. B. L. Newkirk of the General Electric Research Laboratory was

called in to investigate the nature of the failures. He set up a series of

experiments with several units to observe the rotor dynamic behavior.

It was observed that at speeds above the first critical speed, these units

would enter into a violent whirling in which the rotor centerline pre-

cessed at a rate equal to the first critical speed. If the unit rotational

speed were increased above its initial whirl speed, the whirl amplitude

would increase, leading to eventual rotor failure. To further investigate

all aspects and contributing factors to this problem, an experimental

test rotor was constructed to simulate a typical compressor unit. Upon

extensive testing of this unit, the following important facts were uncov-

ered concerning this phenomenon: (63)
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1. The onset speed of whirling or whirl amplitude was unaffected

by refinement in rotor balance.

2. Whirling always occurred above the first critical speed, never
below it.

3. The whirl threshold speed could vary widely between machines
of similar construction.

4. The precession (or whirl) speed was constant regardless of the

unit rotational speed.

5. Whirling was encountered only with built-up rotors.

6. Increasing the foundation flexibility would increase the whirl

threshold speed.

7. Distortion or misalinement of the bearing housing would increase

stability.

8. Introducing damping into the foundation would increase the

whirl threshold speed.

9. Increasing the axial thrust bearing load would increase the

whirl threshold speed.

10. A small disturbance was sometimes required to initiate the
whirl motion in a well-balanced rotor.

It became clear to Dr. Newkirk that the rotor dynamic behavior could

not be attributed to a critical-speed resonance, since the high vibrations

encountered always occurred above the first critical speed and refine-

ment of balance had no effect upon diminishing the whirl amplitudes.

There was nothing in the literature at that time to indicate that any mode

of motion, other than synchronous whirl, was possible. During the

course of the investigation, a theory of the cause of the vibration was

postulated by A. L. Kimball. ¢4T) Kimball suggested that forces normal to

the plane of the deflected rotor could be produced by the hysteresis of

the metal undergoing alternate stress reversal cycles. (See App. A.)

Newkirk concluded that these out-of-phase 4 forces could also be devel-

oped by a disk shrunk on a shaft. Upon reexamination of Jeffcott's
model and introduction of an additional force normal to the deflected

rotor, he was able to demonstrate that the rotor was indeed unstable

above the first critical speed, and thus was partially able to explain some

of his experimental findings. Since Newkirk made no attempt to extend

Jeffcott's model by considering a flexible foundation with damping, he

was unable to explain theoretically several of the key points of his experi-

mental investigations, particularly as to why increased bearing or founda-

tion flexibility and damping will improve the whirl stability.

4When a force vector produced by a given displacement or velocity vector is noncol-

linear, the component of the force vector normal to the line of action of the displacement

or velocity vector is referred to as the out-of-phase component. Also see Ch. 5.
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Dr. Newkirk's observations became known as whirling above the first

critical speed or shaft whirling. Its nature is completely different from"
the vibrations encountered when operating in the vicinity of a critical

speed. Whirling is in general a self-excited phenomenon, while a

critical-speed vibration requires external excitation such as provided by

rotor unbalance. The exciting force for the case of shaft whirling, as

described above, is provided by the frictional forces developed between

two mating surfaces when undergoing relative sliding. This frictional

force will henceforth be referred to as rotating or rotary damping and

can be expressed in the form 5

___ _ R'_-_ CIO _ .R_--_ CIO ._1 , --_C', V =-Cd v _rtor ×6] (2.7)
where

Cr = Rotary damping coefficient

R'= Rotating reference frame with angular velocity to
R = Fixed reference frame

r,_c/o= Velocity of rotor center C relative to 0 in the rotating reference

frame.

For the case where the rotor centerline deflection in R' is invariant

with time, the above relationship reduces to

F =-- Cr_(_l) -- to) (2.8)

It is seen that this force is developed only if the whirl speed _ is dif-

ferent than the rotational speed to. When the motion of the system is
such that (b > to (which occurs below the first critical speed), the whirl

motion is damped out and the system is stable. When the precession

rate is smaller than the rotational speed to, the rotary damping force

becomes a source of excitation; that is, energy is added to the system
causing the whirl amplitudes to increase.

An analysis is presented in Chapter 4 which includes the effects of

foundation flexibility and damping on the whirl threshold speed for a

flexible rotor subjected to rotary damping. From this analysis, it is now

possible to obtain theoretically all of the conclusions that Dr. Newkirk

arrived at experimentally.

Stability charts of the rotor performance in Chapter 4 show the effects

of the ratio of rotor flexibility to foundation flexibility and of the ratio of

stationary damping to rotational damping on the whirl threshold speed.

2.5 NONSYNCHRONOUS PRECESSION--OIL FILM WHIRL

In Dr. Newkirk's continuing research of the problem of shaft whipping,

he encountered in his experimental investigations cases of sl, aft wbirling

•_See Ch. 4 and App. A for additional discussion and derivation.
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in which the frictional effects of a shrink-fit disk could not possibly have

"caused rotor instability. _6s_ He labeled this particular case of rotor

instability "oil whip" to distinguish it from the whirl motion encountered

with built-up rotors or rotors with shrink fits. His investigations of this

phenomenon showed that this form of rotor instability also occurred only
above the system critical speed. Newkirk found that under certain

conditions a rotor shaft mounted in sleeve bearings whipped when the

rotor was running at a speed greater than twice the first critical. He

observed that the whipping occurred only when the bearings were flooded

and the unstable motion could be stopped by reducing the oil flow to the

bearings. 6

The action of the oil bearings in promoting whirl instability was obscure

at the time and Newkirk was at a particular loss to explain why oil whip

did not commence until a speed range greater than twice the critical

speed was attained. Especially confusing to Newkirk was the influence

of foundation flexibility on rotor stability. In the case of shaft whirling

due to internal friction, Newkirk found that he was able to totally elimi-

nate the rotor instability by means of a flexibly mounted bearing housing

(he employed ball bearings with the test rotors with internal friction).

When this was tried with the oil film bearings, it caused the rotor to

develop a violent whip motion. Only after external damping was added

to the flexible bearing mount was it possible to control the rotor

instability. 7

In an attempt to analyze Newkirk's findings on oil-film whirl, Robert-

son _sz_in 1933 investigated the stability of the ideal 360 ° infinitely long

journal bearing. Using the film forces derived by Harrison Cat_in 1913,

Robertson concluded that the rotor will be unstable at all speeds rather

than at speeds above twice the critical speed. This is because the

steady-state bearing forces derived by Harrison have a 90 ° attitude angle

between the applied load and journal displacement; hence the system

has no radial bearing stiffness. Chapter 5 shows that if the bearing

radial stiffness, or in general the system principal stiffness coefficients

vanish, the system will be inherently unstable.

The reason for the discrepancy in Robertson's analysis is that the

Sommerfeld-Harrison treatment of the hydrodynamic pressure profile

predicts a negative film pressure of the same order as the positive pres-

sure. Simons ¢91_showed that only for small displacements from the

origin is it possible for the hydrodynamic film force to be normal to the

displacement. For larger bearing loads, the oil film cavitates causing a

An explanation for this is given in Ch. 5.

7 The explanation of why only foundation flexibility (see Fig. 7 and Fig. D.2) should im-

prove rotor stability for the case of internal shaft friction but not for oil whip is given in

Sec. 4.10.3. Also explained is the reason why external damping is necessary in certain

cases. See Figs. 39-41.
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steady-state bearing attitude angle of 0 _< _b _< _/2. It is this cavitation

of the fluid film which introduces a radial bearing force into the system."

Poritsky (75) in 1952, using small displacement theory, extended Robert-

son's analysis by introducing a radial bearing stiffness term into the

equations of motion. Thus by doing this he was able to demonstrate
that the rotor is indeed stable below twice the rotor critical speed.

Poritsky extended his analysis to include rotor flexibility and arrived at

the following stability criterion

Mto2 [_rr + _-_-0]< 4 (2.9)

where

Kr = rotor stiffness

Kb = bearing stiffness

The system critical speed is approximated by

toCR= _/_ (2.10)

Thus

to < 2toCR for stability

The Poritsky analysis indicates that the introduction of rotor flexibility

will lower the system critical speed and hence will reduce the threshold

of stability, s Extension of the Poritsky analysis to include foundation

flexibility predicts a reduction in the threshold .of stability. Hence at

first glance, this would appear to answer Newkirk's question of why foun-

dation flexibility should reduce stability.

In 1955, Pinkus (73)conducted an extensive experimental investigation

on oil-film whirl with various bearing arrangements. Some of the major
conclusions that Pinkus states are-

1. Rotor unbalance has little effect on the bearing stability.

2. Rotor whip, when developed, occurred at speeds equal to about

twice the first natural critical frequency of the shaft.

3. The frequency of vibration in the unstable range is constant and

equal to the first natural critical frequency of the shaft.

4. Whip motion stopped at speeds nearly three times the first critical

with a heavy shaft.

5. With a light shaft, the whip motion could not be stopped.

6. High loads, high viscosities, and flexible mountings promote

stability.

SA similar conclusion was reached by Hagg and Warner in their paper "Oil Whip in
Flexible Rotors," ASME Trans., Oct. 1953, pp. 1339-1344.
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7. The order of bearing stability, starting with the most stable, is the

three-lobe, tilting pad, pressure, elliptical, three-groove, and

plain circular.

8. Bearing asymmetry favors stability.

Pinkus' experimental conclusion that bearing flexibility will improve

stability is directly opposite to Newkirk's findings and to the theoretical
conclusions of Poritsky, and Hagg and Warner. Recently, Tondl {_°7)

in Czechoslovakia conducted an experimental investigation on a test

rotor similar to Fig. 7 of Chapter 4 with various bearing arrangements.

He concludes that "bearings with a flexible-element loose bushing are

of all the bearings tested undisputably the most resistant to the initiation
of self-excited vibrations .... " This apparent discrepancy between

the theoretical and experimental findings on the effects of flexibly

mounted bearings is explained in Chapter 4.

2.6 HYDRODYNAMIC BEARING CHARACTERISTICS

Many articles have been published on whirling since Newkirk's original

investigation. Such articles as those written by Hagg, {29)Poritsky, {_5)

Hori, {33_Boeker and Sternlicht, {4) and Reddi and Trumpler {7a_are a con-

siderable aid in the understanding of the mechanism of whirl as caused

by fluid film bearings.

The equation necessary to describe the characteristics of the hydro-

dynamic fluid film bearing is the Reynolds equation a

o r_oP] r, 3 OP] [1_2_] O O
(2.11)

where

H= 1 + e cos 0 = dimensionless film thickness

R = bearing radius

P = dimensionless pressure

.p= fluid density
_h=journal precession rate

¢o= total journal angular speed

6/t¢o

For the ease of a compressible fluid, the above equation is a nonlinear

partial differential equation with variable coefficients. As such, it is

almost impossible to obtain closed-form solutions exeept in a certain

limiting eases of high or low A values. This has made it necessary to

9See App. D for discussion and derivation of the general Reynolds equation.
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resort to the digital computer to obtain the bearing load-carrying ca-

pacity. In past analytical work on rotor stability {where the rotor is

treated as a point mass), the Reynolds equation would he coupled with

the dynamical equations, the system stability would be determined by

first obtaining the perturbated equations of motion about an equilibrium

configuration, integrating the unknown pressure profile, and evaluating

the threshold of stability. The drawbacks to this approach are that the

results are not general and cannot be easily extended to a more realistic

situation where rotor flexibility, foundation deflection, and hearing
mass are considered.

The total fluid film forces for both the compressible and incompres-
sible cases can be shown to be represented in the form

Fr =-Aft(A, _, _, L/D) 1- (2.12)

F, = Aft(A, ¢, E, L/D) 1- {2.13)

where the radial and tangential bearing coefficientsfr andj_ are complex

functions of eccentricity and its time derivative, bearing aspect ratio,
and A value.

The forces developed in a hydrodynamic journal bearing have the

following important characteristics:

1. The resultant journal displacement does not lie along the line

of the applied bearing load. This gives rise to force components

acting along and normal to the journal eccentricity vector.

These force components are referred to as the radial and out-of-

phase bearing forces, respectively

2. The radial and out-of-phase bearing forces are nonlinear func-

tions of the eccentricity ratio

3. The magnitude and direction of action of the out-of-phase bear-

ing component is dependent upon the journal precession rate.

If the bearing lubricant is incompressible, then p = constant and the

Reynolds equation is linear. In this case, closed form expressions for

fr and fi can be obtained for such bearings as the ideal 360 ° and "cavi-

tated" 360 ° (180 ° bearing). 1° For small perturbations from an equi-

librium position, the fluid film bearing forces are represented by

Fr -- - to[ Ca,(eo, L/D)J(1 - 2_/oJ)l+ Dd2 ]ae {2.14)

JoSee Eqs. (6.1) and (6.2).
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where

Ca= radial film stiffness factor

Cs = tangential film stiffness factor

Dd= radial damping factor
Ds = tangential damping factor

= d/dt

8e = small displacement from equilibrium

Examination of Eq. (2.12) reveals that the .tangential hydrodynamic

bearing component is very similar in nature to rotary damping (see Eq.
(2.8)), except with the appearance of 2_ instead of tb. Because of this

similarity, many of the conclusions of Chapter 4 concerning the rotor

stability characteristics with respect to rotary damping may be equally

applied to the rotor stability problem caused by fluid film bearings.

Thus, in the fluid film bearing, it is the out-of-phase bearing component

that generates the force required to initiate whirl instability. The

shaft-attitude angle at equilibrium then is a direct measure of the ratio

of the out of phase to radial bearing forces and hence is a measure of

the degree of stability of the system.

2.7 PRESENT STATE OF THE ART

Of the numerous articles written on the subject of rotor behavior, a

complete theory to explain whirl has not been developed. These many

expositions on whirl vary according to whether the investigator is essen-

tially a rotor dynamicist or a bearing specialist. Since the bearing

behavior is rather complex, the rotor dynamicist has approached the

problem by either ignoring the action of the bearings altogether, or
replacing the bearings by linear" springs and dashpots. The recent

article by Dr. Kane (45) of Stanford is an example of the first type of

approach. He examined the conditions for general whirling of a flex-

ible unbalanced rotor by trying to extend Jeffcott's model. Since he

did not include the effects of bearing displacements or any form of

damping (stationary or rotating), his results are inconclusive. This is

as expected, since the forces required to initiate self-excited whirling

have not been included in his analysis. However, an extension of Dr.

Kane's analysis to include stationary damping has been accomplished

(Ch. 3). This analysis shows that the only possible whirl ratio that

satisfies the differential equations of motion for both the transient and

steady-state conditions is the value of _/_----1/3. When the system

speed reaches three times the value of the first critical speed, the rotor

center will precess at a rate equal to the first critical speed. At a recent

gas-bearing conference in England, it was reported that one-third whirl
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was observed with an externally pressurized gas bearing rotor. (21) This "

gas-bearing rotor is closely approximated by the extended Jeffeott modek

The other typical approach applied by rotor dynamicists is to consider

the bearings as one-dimensional linear springs and dashpots, neglecting

the bearing out-of-phase force components. The one-dimensional bear-

ing representation will not even furnish an accurate evaluation of the

system critical speeds (eigenvalues) and bearing attenuation charac-
teristics. This deviation is accentuated as the effective bearing atti-

tude angle increases.

Such an assumption was the basis of analysis by Smith ¢9s) and Linn

and ProhP sty. Prohl makes no attempt to discuss stability (since it

is impossible with his model), but elaborates rather on how the action

of the oil-film elasticity reduces the overall system critical speed.

For bearings with large attitude angles, the critical speed as predicted

by Prohl's method, which utilizes a one-dimensional spring rate, can

be in considerable error due to the neglect of the large out-of-phase film
stiffness factor.

In Ch. 6 the equations of motion of the Jeffcott model are developed

based on the work by Tang and Trumpler with the inclusion of bearing

characteristics and foundation flexibility. The equations show that

a hydrodynamic bearing requires a minimum of two orthogonal stiff-

ness coefficients or spring rates to represent the fihn characteristics.

Hence, the bearings require a two-dimensional representation to com-

pletely describe their behavior. Any attempts to examine system

stability while excluding the effects of the cross-coupling or out-of-

phase bearing coefficient(s) are meaningless. In general, eight quan-

tities are necessary to describe the characteristics of a fluid film bear-

ing-four film stiffness rates and four damping terms, m)

2.8 STABILITY OF THE RIGID BEARING--POINT-MASS ROTOR

Another method of approach that has been frequently used is to ex-

amine the rotor stability problem from the viewpoint of the fluid dynam-

icist. In this approach the stability problem is considered as being

mainly a problem of the characteristics of fluid film bearings and the

rotor is treated either as a rigid body or as a point mass. Such a method

of approach was the basis of the work performed by Reddi and Trum-

pler _rg) in a stability analysis of the 360 ° and 180 ° incompressible fluid

film bearing, and by Cheng and Trumpler _r) and Castelli and Elrod _'_)

in the analysis of the stability characteristics of the infinitely long gas-

lubricated 360 ° journal bearing. Because of the complexity of the

highly nonlinear dynamical equations involved, all previous investiga-

tions have been concerned only with the determination of the incep-

tion of unstable motion, or the threshold of stability. This is essentially
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done by linearizing the equations of motion about an equilibrium posi-

tion and applying the well-known Routh stability criterion for linear

systems.

Trumpler pointed out to Poritsky {75>in 1952 that the rotor forces

and displacements do not increase without limit, as predicted by the

linear system, but remain bounded due to the nonlinear characteristics of
the film and that the "factors which maintain the rotor forces within

limits are very important and should be included in a more compre-

hensive analysis." He states that the magnitude of the oscillatory

motion above the stability threshold is all-important to the engineer.

Poritsky, in reply, states that-

unless the nonlinear theory predicts low limits for the whirl amplitudes, the integration

of these nonlinear equations is only of academic interest. For steady operation, a rotor

should be free from large scale whirling .... Therefore, what is of more interest from

the practical point of view is the study of the stability of small oscillations about the posi-

tions of steady operations.

He further states that "while the effect of nonlinearity of the oil-film

forces may limit the whirl amplitude to a finite value .... nonlinearity

by itself can never restore complete stability in a range where the linear

theory indicates instability."

The author has found that such is not the case. From analog com-

puter studies of an unbalanced rotor, it was found that the addition of

a small nonlinear radial force creates a finite limit cycle, and also,

depending upon the rotor unbalance, bearing attitude angle, a small

nonlinear component can restore the motion of the system to stable

synchronous precession. Nonlinear analysis is difficult to apply to

even the simplest system of a rigid point mass rotor in a journal bearing.
Therefore the main concern of this thesis will be the determination of

the inception speed of unstable motion.

As Newkirk demonstrated experimentally, the conditions that deter-

mine stable rotor operation are dependent upon several system param-

eters such as the bearing characteristics, the rotor flexibility, the bearing

support foundation, and also the external forces and torques acting on

the system. These external forces and torques exerted on the system

by means of the drive mechanism, the rotor unbalance, and the damping,

as furnished by rotor windage losses and through axial thrust bearings,

can have a pronounced effect on the range of stab]e operation.

The present state of the art does not adequately cover the general

problem of rotor stability even for small perturbations. As such, the

present literature is unable to theoretically verify and explain several

important and contradictory aspects of the experimental investigations

of Newkirk, _'_) Pinkus, <_a) Wildmann, <t11) and others, on whirl in-

stability. It is the purpose of this thesis to help shed light on this
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problem to explain some of the conflicting experimental evidence gath-

ered on these phenomena.

The work presented herein represents an attempt to treat the problem

of rotor instability in general in order to develop a useful stability cri-

teria that may be employed by the design engineer so as to avoid or

minimize the problem of self-excited whirl instability.



Chapter 3

Whirling of a Single-Mass Flexible
Unbalanced Rotor

Nomenclature

C-rotor volume center

M-rotor mass

/-rotor polar moment of inertia about CG

O-undeflected rotor position
R-fixed reference frame

R'-relative reference frame

M-rotor mass center

to-- total angular velocity of system =/_ + _b

nx nu--unit vector set fixed in R
nr, n_-unit vector set fixed m R

y fly fi_ fir

0 ×

FIGURE 6.-Section A-,4' of rotor.
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3.1 WHIRLING OF A SINGLE-MASS FLEXIBLE ROTOR--EQUATIONS OF"

MOTION

The system under consideration possesses three degrees of freedom.

The generalized coordinates employed to describe this system are:

(a) 8 -deflection of rotor center from origin O

6 -precession angle

/3 - phase angle
(b) X, Y-Cartesian coordinates of the displaced rotor center

/3 -phase angle

The equations of motion may be expressed in either set of coordinates.

Since the system has three degrees of freedom, there will be three
equations of motion, one for each generalized coordinate•

3.1.1 Kinetic Energy of System

T= 1/2 MV2m + 1/2 (_bij (3.1)

Vm = velocity of mass center

A position vector to the rotor mass center M from the fixed point O is

given by
--) ..)

pM/o= [8+e cos /3]nr+e sin /3 n, (3.2)

The velocity of the mass center M is given by

where:

R_MIO Rd R'd p-->M/otg,, o]=¥ +,,;','x

Rd
--= time rate of change in fixed reference frame R
dt

R,d
--=time rate of change in relative reference frame R'
dt

_-)RtR(o =angular velocity vector of relative
R = d)nz

...) -.),

R_ MIO= [__e sin /3(o]nn + [8_ + e cos /3oJ]n,

(3.3)

reference frame R' in

The total kinetic energy of the system is given by

T= ½mt_V M'° _rqMl°]• + ½co" tol

= ½(m[g--eto sin/312+ m [6_+e(o cos/312+1(0 a} (3.4)
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3.1.2 Potential Energy--V
i

The potential energy of the rotor is composed of the strain energy of

deformation of the rotor and the vertical position of the rotor mass
center.

V = _ Kr82 + mgh (3.5)

where

Kr = rotor stiffness coefficient
,-->

h=P M/°" nv=8 sin 6+e sin (/3+ 6)

.'. V=_ Kr82 + mg[8 sin 6+ e sin _+6)1 (3.6)

3.1.3 Generalized Forces

The external forces and torques acting on the system which have not

been taken into consideration is the rotor damping force acting at C

and the rotor drive torque T.

The damping force acting at C is given by

l_ext -_--- -- "-> .[CSnr+ (3.7)CScbn,]

The generalized forces for each of the coordinates are given by

__ 0_' -_ ._ -,__

Fgr = E Fiex," _r V c = 8nr + 8q_n,
i=1

(a) 8_; Ft =-- [CSn_ + C86n,] • n--'R=-- C8

(b) /3; Fa=--_ 03
.O--_=--T
•-_ . _ _ 07a

(c) cb; F, =- [CSnr+ C86n,]" 8n, -;_ "_--_

=- C826 - T

(3.8)

(3.9)

3.1.4 lagmnge's Equations of Motion

The equations of motion will be derived by means of Lagrange's

equations which state:

-- _ = F gr (3.10)

Where:

L = Lagrangian = T- V

.Fgr = Generalized force for the g_ coordinate

219-720 0-66--3
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m {[_--eto sin/3]2+[8_b+eto COS /312+k2to2-4 -

-- 2g_ sin 6 + e sin [,8 + 6]) } -- ½K82 (3.11)

k = radius of gyration

d {m[_-e sin/3to]}+m[g sin _b--8_2--eto cos/3]+K8=-C_(a) &

(b) /3",-dtd{me [toe_J1 + (k)2]-_ sin/3+8_ cos/3]}

+ me[to(_ cos/3+86 sin/3)+g cos (/3+¢,)1=- T,

md [826 _ e8 sin/3 + e2to + e8 cos/3(to + d) + K2to](c) ,_; _/-

+ m_8 cos d_+ e cos (_ + _b)]=-- C825 - T

Assume the total angular velocity to of the system is constant,

to= _+_= constant

Hence/a=O; and/_=--_

The equations of motion of the system reduce to:

(a) 8; g + C g + (tomb - 62) 8 = eto2 cos/3 -- g sin
m

(b) /3; e{[8_+ 2_61 cos/3-[8- 84,_1sin/3} =--eg cos (_+ _b) -T
m

(c) 6; 82_ + [Ca+ 2_] 8_+e[(8_+ 28d_) cos /3-- sin/3(_+ _to2--_])] i

T
=--g[6 cos _b+e cos (/3+ _)]---- (3.12)

m.

The torque T will be eliminated between Eq. 3.12 (b) and (c) to yield

the system:

(a) g + K,_ + (to_a -- _z) 8 = eto2 cos/3 -- g sin _b

(b) 8_+(Ks$+28)6=eto 2 sin/3--g cos ¢ (3.13)

where :

K_ = damping factor = C/m

toUR= (Natural lateral rotor frequency) 2 = K/m (for case of light damping)

3.2 ANALYSIS OF ROTOR MOTION

Specific cases for the governing equations of motion will be considered:

3.2.1 Case I-- Synchronous Procession

Synchronous precession implies that the precession rate _b of the

rotor is equal to the total angular velocity of the system to.
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The equations of motion are:

(a) "_+ K,_-t- (o_CR-- o_)8--'-- eto 9 cos /3--g sin _b

(b) 8_ + (K,$ + 28)_b = eto 2 sin/3 - g cos _b

Assume a condition of steady-state whirling of a vertical rotor.

condition implies:

8 = constant

/3 = constant
_= to = constant

g=0

The governing Eqs. (3.14) and (3.15) reduce to:

(a) (toUR -- 002) 8 _- met°2 cos fl

(b) K_to = eto 2 sin/3

Solving for the phase angle/3:

K_to K, =C; o_R=K__
tan/3 = to2cR- to2, m m

Solve for the rotor deflection 8:

29

(3.14)

(3.15)

This

(3.16)

(3.17)

2 _ (£)2
_CR

Ksto

8 = eto_ sin _O= e

Kco N/{ (_)'-- 1}' + (_) 2

(3.18)
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The force transmitted to each bearing is given by

where A = amplitude factor

F = (½ Ke)A

1
A = (3.19)

_/[ (_--R)' -- 1}2 + (-_-_)2

The critical speed is defined as the speed at which

dF Ke _ 2t_ to212¢o/_s -- 4oJ(to_R -- oj2)l_

= o / +, c.(OJ2 -- ¢D2) 2 2[K_stO 2 -4- (OJ_R -- 0j2)213] 2 .]

Ke

-_- 2[K_soJ2 -4-(to2R -- ¢fl2)21312{Ksc°2 + 2(tO2R -- tO2)tO2R} : 0
(3.20)

If we assume that the denominator will be nonzero, we have the fol-

lowing relationship:

/ 1

COs _ OJCR _[
1--½ (Ks_

\_CR/

(3.21)

Where:

¢_cR= free natural lateral resonance frequency = X/-K/m

_s = actual system resonance frequency

From the above equation, it can be seen that only for the case of zero

damping (Ks =0) will the system resonance frequency (critical speed)

correspond to the natural lateral frequency _cR. In general, the effects

of damping will increase the system resonance frequency.
The maximum force transmitted to the bearings during the system

resonance is given by

Fmax -- KeoocR (3.22)

51 1 ( Ks'_2

In general, the ratio tocR/Ks >> 1.0. In this case the maximum force

transmitted may be expressed by

= eoJcR (K_
Fmax 2 \Ks/ (3.23)
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Thus, it is seen that with the perfectly balanced rotor (e = 0), the force
transmitted to the bearings will be zero. In actuality, a finite value will

exist for e depending upon the rotor-balancing equipment used. For

a particular rotor, the value of e and K, the rotor stiffness, is fixed or may

be varied only slightly. The only other two variables at our disposal

to adjust are OJca and the damping factor Ks. The damping factor is

greatly affected by the choice of bearings in the system. The inherent

damping as furnished by fluid film bearings greatly exceeds the damping

characteristics of rolling element bearings. For a given rotor it is

possible to greatly reduce the forces transmitted during system res-

onance by reducing the natural lateral frequency of the system. This

is accomplished by having the bearings elastically mounted. The equa-

tions presented apply rigorously only to the case of a simply supported

rotor. The simple performance criterion developed may be viewed

as a guide to predict the total system behavior when including the effects

of simple bearings, etc.

3.2.2 Case II--Zero Precession

The condition of zero precession implies that the rotor vibrates in a

plane. This is given by the precessional angular velocity.

_,=0

(a) _+Ks_+to_a8 = eto 2 cos/3--g sin 6
(3.13)

(b) 0 =eto z sin/3-g cos _b (3.24)
(3.13)

The above condition is possible only if the eccentricity e (unbalance)

or the total angular velocity to is zero. In either case the resulting

equation of motion is

+ K,8 + to_rt8 = 0 (3.25)

which is the equation of free, damped lateral vibrations. It is important

to note that all of the present methods of calculating critical speeds

are based upon finding the natural lateral frequencies of undamped

motion. From this simple model it is seen that the normal unbalanced

rotor does not vibrate in a plane but revolves or precesses to form an

orbit.

3.2.3 Case III--Secondary Critical Speed (Effect of Gravity)

Assume rotor synchronous precession
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(a) g + K,_ + (to_R-- to2)8 = eto2 cos/3 -- g sin (tot --/3)

(b) 2to_+Kc, JS= eto 2 sin/3--g cos (tot--/3) (3.26)

Solving Eq. (3.26(b)) for a particular solution; we obtain

e

8 =f_ sin/3

where

D=K.
2to

g [sin (tot--/3)+D cos (tot--/3)]
2to2[1 +D 2]

(3.26.1)

Equation (3.26.1) must also represent a particular solution of Eq. (3.26(a)).

Substitution of the above into the first equation of motion results in the

following conditions to be met in order that 8 be a valid solution.

2D
(1) sin/3 2 cos/3 = 0

52
g [3+_D +( t° 2 )]sin(tot-/3)=(2) 211 +D 2]

gD rl /___%_, \]
(3) 2[1+D2][_+(, .2 )] cos (tot -- /3) = 0

(3.27)

The first condition, Eq. (3.27.1), is satisfied by the requirement that

the rotor phase angle/3 be given by

Ks6o

/3 = tan-I toUR-- t°_ (3.27.4)

the above is identical to Eq. (3.17) obtained for synchronous precession

in general. The second relationship requires that

or

to_- to["_'= 03+ DZ+ to2

(3.27.5)

The above condition represents the system secondary critical speed.

Note that the last two conditions are identically satisfied if g=0 and

to may be any speed.

Equation (3.27.3) requires that either
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o_ 2 -- (02

1 +---_---_ = 0. (A)

or

gO
(B) 2 [1 + 02] = 0 (3.27.6)

The first condition leads to the contradictory statement that

(0 = ._/2 gOCR

which is in conflict with Eq. (3.27.5). Thus it is necessary that

gD _'0
2[l+D 2]

substitute 8st = rotor static deflection = Mg/K and

D=K_2*=C______
Zto 2Mto

((0ca_ z toKsSst C(o_st
"'" \-_o/ [l+DZ](3._.5) m (3.28)

The third condition implies that the rotor damping force C • (08 divided

by the bearing mass M must be a small quantity or

Fdamping _ 0

M

in order to observe a secondary system critical speed. This criterion
may help to explain why secondary critical speeds have sometimes been

observed with heavy, massive low-speed turborotors, but seldom with

lightweight high-speed rotors. If the system damping characteristics

are too high, this phenomenon is completely suppressed.
The rotor deflection at

light damping) is given by

e

the secondary critical speed (ta= tacR/2 for

[1+D ]28st[sin

(3.29)
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Hence we conclude that when the rotor angular velocity is equal to

one-half the first critical speed, a horizontal rotor is capable of possesS-

ing a secondary critical speed. The radius of the whirl orbit is equal to

twice the static deflection (or initial rotor sag). Note that gravity is not

the only cause of secondary critical speeds. Rotors with unsymmetric

shaft properties can cause excessive rotor deflection.

The investigation of the possible occurrence of subcritical resonance

vibrations has been discussed by several authors. Rankine, (7s_ in his

early publications on vibrations of rotors, stated that a resonance vibra-

tion at 1/2taca was possible. This value was later shown to be erroneous,

since Rankine neglected the Coriolis acceleration term in his equations

of motion. Stodola (1°°_was the first to demonstrate that the disk weights

of a horizontal shaft can create disturbing forces which at a certain speed

can produce considerable shaft vibration. Timoshenko gives a simpli-

fied explanation of the secondary critical-speed effect, developed along

the lines of Stodola, in his text Yibration Problems in Engineering. (_°5_

The actual observation of the secondary critical-speed phenomenon

was reported as early as 1919 by Toppl. (99)

An extensive article on the subcritical speeds of a rotating shaft was

presented by Soderberg (94) in the past decade. Soderberg examines

and compares the resonance amplitudes at the critical speed to the rotor

subcritical vibrations caused by gravity and by variable rotor elasticity

for an undamped rotor. In his investigation of the secondary critical

speed due to gravity, he arrives at the following equation

d2r 4- (ta2 R -- ta2 -4- 2/xta 2 sin tat)r = ta_e
dt 2 [281

where r is the displacement of the rotor mass center from the steady-

state position.

Equation [28] of Ref. 94 is a nonhomogeneous Mathieu equation of
the form

a-2W
dz--T+ [8+ _ cos z]W= C

and its solutions and regions of stability are discussed in detail in

Stoker. (101) Soderberg approximates the solution by solving the equa-

tion considering the term (2ttrta 2) sin tat as a forcing function independent

of r, which results in

= eta_a [ 2Eta2(ta_,,--ta 2) ]r tara_t a2 1+ 2 "" sin tat [34]taca(ta_R -- 4ta 2)
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• He then concluded that since r becomes unbounded when the rotor

speed is exactly one-half the rotor critical speed, then the rotor preces-
sion angle must be of the form

0 = tot + Xtot sin cot

which leads to a higher order Mathieu equation.

when _o= tOcw/2 is given by

[37]

The solution he obtains

where

r = 4 el1 -- 3/8_(2 sin tot + tot cos cot)]

p = radius of gyration

[491

Even though the term t is a small quantity, Soderberg predicts that the

vibration amplitudes of an undamped rotor will become unbounded if

operated continuously at one-half the rotor critical speed. This finding

is in contrast to Eq. (3.29), which shows that the subcritical vibration

amplitude of an undamped rotor is bounded and also that the inclusion

of sufficient rotor damping will suppress this phenomenon.

Case IV--General Whirling (Nonsynchmnous Precession)

/_ rtto

#=n_t+_0

The equations of motion (neglecting gravity) are

(a) "_+.K¢3+[O_ca+(1--n)2o_]8=e_ cos (ntot+_o)

(b) [26 + Kc3]to[1 -- n] = eo_ sin (ntot + _d

Solving for 6

where

eo o  -o,1,,2211 -- n] + n2co2j

B-- a = ntot +Bo-- tan-1 (2--_)

(3.30)

(3.31)
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Applying the initial condition of

SYSTEMS ,.

8(0)=80

80 = .4 - R cos (/3o- a) (3.32)

where

Hence

R=

eoJ

n] Ks z211-- [ _--f) " -11/2+ n2to2j

e--_t tO_R--(1--n)2m z- [8o+R cos (flo--a)] +R cos (_--a)[ n2t°2

-- _ca + (1 - n)2to 2] + noJK_R sin (/3 - a) - eoJ2 cos/3 = 0 (3.33)

(Equation (3.33) represents an extension of the work of Dr. T. R. Kane

in "An Addition to the Theory of Whirling," J. Appl. Mech., Vol. 83, 1961.

Dr. Kane neglected the effects of damping in his equations. It will be

seen that even for the case of light damping, the nature of the solutions

is considerably altered.)

Problem:

Do any values of n exist such that the above equation is satisfied for
all time t?

If we consider light damping, then

Ks e
---* O; R _ --
2nto 2n[1 -- n]

e-_t[tO2ca--(1--n)2to2][8O+2n[1Ln ] cos (flo-- oe)]

e [(2n -- 1)%J 2- a_a ] cos fi = 0 (3.34)
+2n[1--n]

Consider values of n (other than 0 or 1) which will make Eq. (3.34)

identically vanish. Let

OJ_R-- (1 -- rt)2602= 0

and

[2n -- 1 ]2to2 -- tO[a = 0

Solving for n
n = 2/3

(3.35)
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Hence,

to = 3tOcR and 4: = OJcR (3.36)

The above condition implies that if the rotor angular velocity to of

the system is three times the natural lateral critical frequency t0CR, one

possible motion is for the system to precess at a rate equal to the critical,

speed. This has been reported to occur with an externally pressurized

gas bearing rotor and has been referred to as "fractional frequency

whirl." (Although the single-mass Jeffcott model is physically unlike

a rigid rotor or externally pressurized bearings, the equations of cylin-

drical precession are similar.)
As a second case, consider the less-stringent condition that the

transient whirl dies out. The steady-state equation (t--_ oo) is

2n(1-n)  [,2ncos 1)2- -_ to_=0 (3.37)

Consider the case where co >> tOcR or the angular velocity is much higher

than the first critical speed. In this case, Eq. (3.37) reduces to

(2n -- 1) 2 _- 0

or

n = 1/2

Hence

$=0,/2

(3.38)

Thus, we have demonstrated that half-frequency whirling is possible

only in the limiting case as the rotor approaches speeds considerably

greater than the first critical. Note that it is impossible to obtain this

conclusion unless damping is retained in the equations of motion.

Half-frequency whirling is usually associated with hydrodynamic

fluid-film bearings. At least two bearing coefficients are required to

represent the bearing stiffness characteristics: a radial "spring" rate

and a tangential spring rate. It is the presence of the tangential or

out-of-phase bearing force which" causes self-excited half-frequency

whirl to occur at approximately twice the rotor critical speed. In the

absence of this force, half-frequency whirling cannot occur.

3.3 SUMMARY AND CONCLUSIONS

In Table l are presented a summary of the various forms of rotor

whirling. For each particular case there are three subsections which

represent various degrees of rotor damping• Line A, which represents

the rotor behavior with zero damping, was obtained from Ref. 45. Line

B represents the rotor performance with nonzero damping forces.
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It is important to note the influence of even small damping on the
rotor characteristics. For example, in the first two cases which reprd-

sent synchronous rotor precession, the introduction of damping elimi-

nates the possibility of backward synchronous motion and also causes

the rotor-phase relationship to be single valued. In case 1A and 1B,

we see that if the rotor is running at the critical speed or resonance

frequency, then the rotor amplitude will increase continuously with

time. If the rotor damping is nonzero (]C), then the rotor amplitude

will be bounded. The rotor deflection at the critical speed will be some

multiple of the rotor unbalance e. This amplitude factor will be referred
to as the rotor critical amplification factor, ACR = tocR/K for a simple

system, and we shall see later that it will be an important parameter
in the study of rotor stability. Case 2 represents rotor synchronous

precession in general. The rotor deflection given in 2C is identical to
the results stated by Jeffcott (4°) and Fig. 5 represents a plot of this func-

tion. Notice in 2C that damping causes the rotor-phase angle to be

zero at low speed and increase smoothly with speed to a maximum value

of _'. This rotor-phase relationship is depicted in Fig. 4. For a single-

mass rotor in which the motion is confined in a plane, there is only one

phase angle. At the rotor critical speed of this system, the rotor-phase

angle is 90 ° and the eccentricity vector is orthogonal to the rotor deflec-

tion. If additional degrees of freedom such as conical modes or multi-

masses are introduced into the system, there will be additional rotor

phase angles corresponding to each mode.
From the examination of Cases 1, 2, and 7, the following character-

istics concerning rotor synchronous precession are summarized as
follows:

1. For small values of the damping parameter and (or) to _ toCR,

the phase angle/3 is zero. Thus, for small damping and speeds

below the first critical speed, the unbalance is in phase with the
maximum deflection and the mass center rotates about the

volume center.

2. As the rotor speed to approaches the critical speed tocR, the

phase angle /3 approaches 7r/2. At this speed, if no damping

is present, amplitudes of vibration of dangerous proportions
can result.

3. For the condition where to _> toca and low damping, the phase

angle approaches ¢r as a limit. In this situation the volume

center is revolving around the mass center and the force trans-

mitted to the bearings reaches an asymptote equal to Ke/2.

4. If large amounts of damping are present in the system, a peak

vibration is not observed at the system critical speed. The

rotor deflection increases smoothly from 0 to e as the rotor speed

to increases from 0 to to _> toCR-



o WHIRLING OF SINGLE-MASS ROTOR 41

5. The system critical speed increases slightly with an increase in

• viscous damping. The system critical corresponds to the natural

lateral frequency of vibration ¢o only for the case when the damp-

ing is zero or the damping forces are proportionate to the velocity

squared. 1

6. The rotor phase angle is a single-valued and continuous function

in a damped system.

7. Synchronous backward precession is not possible even in a

lightly damped rotor.

8. A lightly damped horizontal rotor may exhibit a secondary
critical speed effect when operating at one-half the rotor first crit-

ical speed. The rotor whirl orbit will be approximately twice

the rotor static deflection (Case 7).

The Cases 3 through 6 represent various modes of whirling or non-

synchronous precession. For example, Case 3 shows that when the

rotor speed reaches three times the rotor critical speed, the rotor is

capable of forward or backward precession equal to the rotor critical

speed oJCR. The inclusion of damping, however minute, eliminates

the possibility of backward precession. If finite damping is consid-

ered, this motion is possible only if the system damping is light; i.e.,

if K,/2COca _ 1.0.

In all of the above cases of whirling in general, it was found that the

inclusion of sufficient damping will suppress all whirl tendency and

permit only synchronous forward rotor precession. The inclusion of

damping into the equations of motion considerably changes the funda-

mental nature of the motion as described in Ref. 45. For example,

Case 4 reduces to Case ], and Case 5 vanishes altogether when damping

is considered. Thus the only two distinct cases of whirling are Cases 3

and 6. Case 6 states that the rotor is capable of haff-frequency whirling

(_b°=¢0/2) when the rotor speed becomes infinitely high for a lightly

damped system. Note that this conclusion, although unrealistic,

cannot be obtained from a system in which the damping is excluded.

In conclusion, we find that it is impossible to examine or explain the

occurrence of rotor whirling by means of a conservative system. It

is impossible with this system to explain the rotor whirling as observed by

Newkirk, Stodola, Pinkus, and others.

It will be shown later that whirling can occur only in nonconservative

systems in which the system dissipation function possesses special

characteristics. In the next chapter the early experimental findings

1See discussion by E. J. Gunter of "Dynamics of Synchronous-Precessing Turbo-
rotors .... " by T. M. Tang and P. R. Trumpler, J. of Applied Mech., Mar.1965, pp. 223-226.
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of Newkirk will be evaluated and verified by including into the rotor

equations of motion the influence of internal rotor friction damping'.

In subsequent chapters, the influence of hydrodynamic fluid-film

bearings on self-excited whirling will be examined.



Chapter 4

Rotor Whirling Induced by Internal

Friction Damping

It is clear from the analysis of Chapter 3 that the evaluation of the

single-mass Jeffcott model does not lead to an explanation of the rotor

whirl motion observed by Dr. Newkirk in 1924. In Chapter 3 the Jeff-

cott model was examined for whirling in general, with and without

the influence of external viscous damping. Table 1 shows that the

introduction of external damping into the system suppresses the tran-

sient rotor motion and allows only synchronous precessive motion due

to rotor unbalance. To analyze the rotor whirl motion observed by

Dr. Newkirk, the Jeffcott model will be extended to include the foun-

dation characteristics, the bearing mass, and internal rotor friction.

4.1 DISCUSSION OF INTERNAL FRICTION DAMPING

As previously mentioned in Sec. 2.4, Kimball _47_in 1924.suggested

that internal shaft friction could be responsible for shaft whirling.

He postulated that below the rotor critical speed the internal friction

would damp out the whirl motion, while above the critical speed the

internal rotor friction would sustain the whirl. Later in 1925, Kimball

and Lovell _sl_ performed extensive tests of the internal friction charac-

teristics of various metallic and nonmetallic materials. (Additional

discussion of the work of Kimball and Lovell and other investigators on

hysteresis damping is given in App. A.) The experimental technique

used to evaluate the magnitude of the internal friction was by measure-

ments of the deflection characteristics of a vertically loaded, horizontal

rotating shaft. If the shaft material were perfectly elastic, the applica-

tion of a vertical load should cause only a corresponding vertical dis-

placement. The presence of material hysteresis in the rotating, de-

flected shaft as its segments undergo alternate stress reversal cycles

of compression and tension cause the shaft to deflect sideways. Kim-

ball, by measurement of the shaft vertical inclination angle, was able
to determine the ratio of the internal friction forces to the elastic shaft

forces. His measurements showed that this ratio for most ferrous and

nonferrous materials is between (1 to 2) × 10 -s.

43
219-720 0-66--4
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4.2 EFFECTOF SHRINK FITS ON ROTOR INTERNAL FRICTION

Because of the small order of magnitude of the friction forces ob-

served by Kimball, Newkirk concluded that the internal friction created

by shrink fits of the impellers and spacers was the predominate cause
of the observed whirl instability. He had observed that when all shrink

fits were removed from his experimental rotor, no whirl instability could

develop. Kimball, at Newkirk's suggestion, constructed a special test

rotor with rings on hubs shrunk on the shaft. "sJ He did indeed confirm

Newkirk's conclusion that the frictional effect of shrink fits is a more

active cause of shaft whirling than the internal friction within the shaft

itself. Measurements showed that, even with the rather light shrink-

ages used in the tests, the effective internal friction may be increased

from two to five times its original value. In fact, Kimball found that

long clamping fits always lead to trouble with high-speed _ rotors. "9)

For the case of a hub or a sleeve which is fastened to a shaft which

is afterward deflected, either the surface fibers of the shaft must slip

inside the sleeve as they alternately elongate and contract, or the sleeve

itself must bend along with the shaft. Usually both actions occur

simultaneously to an extent which depends upon the tightness of the
shrink fit and the relative stiffness of the two parts. H.D. Taylor, after

conducting numerous tests with various hub configurations, concluded

that the axial contact length of shrink fits should be as short as permis-

sible and as tight as possible without exceeding the yield strength of the

material. Robertson (sS) reports that even short, highly stressed shrink

fits are not entirely devoid of problems. He states that even small, tight

shrink fits may develop whirl instability, provided the rotor is given a

sufficiently large initial disturbance or displacement to initiate relative

internal slippage in the fit. If long shrink fits such as compressor wheels

and impeller spacers must be employed, it is important that these pieces

be undercut along the central region of the inner bore so that the contact
area is restricted to the ends of the shrink fit. Robertson shows several

designs of hubs and bosses which have been found to be beneficial in

reducing internal friction effects.

Robertson also concludes that a similar effect can be produced by any

friction which opposes a change of the deflection of the shaft, such as the
friction which exists at the connections of flexible couplings, and even in

"rigid" couplings.

"hysteretic forces."

He referred to this group of friction forces as

t A rotor is termed "high speed" if it operates above its first critical speed.
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4.3 DISCUSSION OF THE EXPERIMENTAL INVESTIGATION AND CON-

" CLUSIONS OF DR. NEWKIRK

The major conclusions that Dr. Newkirk stated on the behavior of

shaft whirling due to internal rotor friction are summarized in Sec. 2.4.

Of these conclusions, statement 6, concerning the influence of foundation

flexibility, was the most perplexing to him. He remained at a loss to

explain why foundation flexibility alone should improve the rotor stability.

In the early phase of his experimental investigation, his assistant,

H. D. Taylor, discovered that any looseness in the bearing support or

clamps which held the test model to the floor had a strong tendency to

prevent whipping. Tests were conducted to determine whether bearing-

support flexibility alone would prevent whipping or whether additional

bearing damping was also required. Conclusions of the experiments

indicated that bearing flexibility could prevent rotor whipping even with-

out external bearing damping. Newkirk states in Ref. 63: "It is perhaps

difficult to accept the view that flexibility only of the bearing support

without any attendant damping or energy absorption in the bearing pre-

vents whipping."

Following these experiments, special spring bearings were designed

for the unstable turbocompressors, which incorporated flexibility and

damping. Tests were conducted with this bearing arrangement on a

three-bearing turbocompressor rotor, using a wide range of stiffness and

damping values. In no case could the compressor be made to whip

with the flexible bearing support. It was also found that the bearing

damping was not necessary to suppress the whip.

It would appear that the introduction of foundation flexibility will

lower the rotor first critical speed, as demonstrated by Linn and Prohl, 2

and hence reduce the whirl threshold speed in the absence of external

damping. Instead, in all cases the rotor stability was improved! This

question of foundation flexibility became even more of an enigma to

Newkirk, when in 1925 he investigated shaft whirling caused by fluid

film bearings. _65) When a spring-mounted bearing which was designed

to avoid inherent damping was used on the rotor which exhibited oil-

film whirl, instead of suppressing the instability it permitted a violent

whipping to take place. In this case it was found that friction damping

in the spring-mounted bearing was essential in stopping the whip
motion. 3

z F. C. Linn and M. A. Prohl, "The Effect of Flexibility of Support Upon the Critical
Speeds of High-Speed Rotors," Trans. SNAME, Vol. 59, pp. 536-553.

3Further discussion of Newkirk's investigations on oil-film whirl is given in Ch. 6.
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4.4. EQUATIONS OF MOTION FOR UGHT DAMPING .

4.4. I Discussion of System and Assumptions

The system to be analyzed is shown in Fig. 7. Figure 7 represents
the extended Jeffcott rotor to include foundation flexibility and bearing

mass. The mass of the rotor is contained in a plane normal to line 0'0"

Y

_lfl nY

If1x

z

FIGURE 7.-General single.mass rotor on an elastic foundation.

which is situated midway between the two bearing locations. The major

assumptions which will be employed in the simplified analysis are:

1. Zero bearing mass.

2. No gyroscopic forces.

3. The damping forces are small in comparison to the elastic forces.

4. The characteristics and displacements at both bearings are
identical.

5. The rotor total angular velocity is constant.



• ROTOR WHIRLING DUE TO FRICTION DAMPING 47
i

If rotor unbalance is included, then Fig. 7 represents a system of five

_legrees of freedom. 4 If gyroscopic forces are included, ! the system
would require seven degrees of freedom to represent it.

The assumption of constant angular rotor speed reduces the five

degrees of freedom system to four. The assumption of zero bearing

mass and light damping forces further reduces the system to two coupled

second-order differential equations. The assumption that the rotor

hysteresis damping forces are small in comparison to the elastic forces

is in line with Kimball's experimental measurements.5 This restriction

will be removed in the general derivation.

4.4.2 Deflection Analysis

The displacement of the journal center is given by the position vector

(see Fig. 8)

OpOb = _b = Xlnx + YI_u (4.1)

c

Y
iny

_X

FIGURE 8.- Schematic representation of the Jeffcott rotor on an isotropic elastic foundation.

where X_ and Y1 are the Cartesian coordinates of point Ob relative to

point O, and the displacement of the rotor centerline at point C_ is given

by:

O_C -- '') " _ ")-- _r _--"X2n_ + Yznu (4.2)

where X2 and I12 are the Cartesian coordinates of point C relative to

point Ob and n_, ny, and nz represent a set of fixed unit vectors.

4 The general five degrees of freedom system is given in Sec. 4.9.

5 A. L. Kimball, Jr., "Measurement of Internal Friction in a Revolving Deflected Shaft,"

G.E. Review, vol. 28, No. 8, Aug. 1925, pp. 554-558.
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The total displacement of the rotor center is given by

where

(a) X = X, + X2 /
1

(b) Y= Y_ + Y2J

o_c= Xnx + Ynt, (4.3)

(4.4)

In general, the mass center of the rotor will not correspond to the rotor

elastic axis at C. Only for the caseof perfect balance will point M cor-
respond to point C. In this case opc= opM and the equations of motion

of the rotor will be given by

MX--Fz=O M_'--Fu=O (4.5)

4.4.3 Bearing Forces

The forces exerted at the bearing or foundation at Ob are assumed to
be of the form

rx = - c_k, - K_X, I
(4.6)/

Fy =-- CvYi - KuYIJ

For the case of a symmetric bearing support, the elastic and damping

characteristics are uniform in all directions. The bearing force is given

by

(4.7)

4.4.4 Shaft Characteristics

The forces acting on the shaft are the elastic restoring forces and the

damping forces. Of importance in the calculation of rotor stability

is the inclusion of rotary damping on the shaft caused by internal rotor

friction. This will be defined as the damping which resists a change of

strain of the flexible members.

Consider a rotating reference frame R' which is revolving with an

angular velocity of oJ. The rotor forces will be expressed in this system,

since damping in the shaft is brought about by a change in configuration

of the rotating shaft.
The forces acting at C are given by (see App. A)

_ =-- [Cg'_c/ob + K.,-_l (4.8)



• ROTOR WHIRLING DUE TO FRICTION DAMPING 49

where R'_C/Ob= velocity of point C relative to O in reference frame R' or

...) ...)
RtVC[O b = RVC[O b "_ )< _'_ • -_ . .._ -_-- _bSn_ + 6nr -- toSn¢ (4.9)

_c=-[(C2_r -4-K2t_r)-_r -4-C2_r(_ -- to)_'6] (4.10)

==( COS _b sin _b _ {_

\--sin _b cos _)J_"_,_

By taking the dot product of Eq. (4.10)with nx and _v, the horizontal

and vertical components are obtained

--), -)

(a) Fz = Fc" n_ =-- [(C2_r -4- K2_r) cos 6 -- C28r((_--00) sin 61

(b) Fy = _c" nv =-- [(C2_r + K2$r) sin _b+ C28r(_ - to) cos 61

Since

and

X2 = 8_ cos 6

X2 = _r COS (J)- _r_ sin _b

Y2 = 8_ sin

_'2=_r sin _b+8,_ cos _b (4.13)

Hence,

(a) Fx (4._.27"13)[C2(X2q- toY2) -4-K2X2]

Fu <4_ _,_[G2(Y_- o_X_)+ K2Yd

Combining Eqs. (4.4), (4.6), and (4.8) yields

(a) F_ = C2Kx (X2 + toY2) K2C1 Xl
K_ + K2 K_ + K2

C2K_ (Y2--o._X2) K2C, _, K_K2 y
(b) Fv = Ky + K., Ky + K2 K1 + K2

KxK2 X
K_ + K2

(4.12)

(4.14)

(4.15)

(4.11)

The equations of transformation between the n_, n_ and the fixed

Cartesian unit vector set _ and _y are given by
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If it is assumed that the damping forces are much smaller than the

elastic forces, then Eqs. (4.15(a), (b)) become

(a) F_ =- C_ \_] - \K_ + K2]

( Ks _2__C2 ( Kv _2(I__toX)
(b) Fu=-C \_] \_/

K_K2 XI

KTK2 I

K_K2 . I

(4.16)

4.4.5 Governing Equations

The equations of motion of the system including rotor unbalance and

gravity are given by

X+(px+v:_+to _ Y+to2c_X=et, to2 cos tot / (4.17)

/_: + (fry + vv)Y -- to _/g--_u X + toc2uY = et, to2 sin tot + g

where

(°)2izx=-_ \Kx + K2] = D2

C2 K 2 1 2
--D

'_ = _ \K-Kf4-_] = \a+ l'U

C,( K2 "_2O R 2"_=_ \K--7_/= (_--_)

C2 Ks K_
Cl D2 = -- R = -- a =--

DI = _-, M' Ku' K_

toc_ = natural system resonance frequency for the X direction.

f K2K_ _f a= X/M(_ ¥ K_I= toc_ R +,_

tocy = natural system resonance frequency for the Y direction.

_/ K2K4t = tocno_/_ 1 R= _1M(K2 + Ku)

tocno = rotor natural resonance frequency on rigid supports.
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4.5 ROTOR SYNCHRONOUS PRECESSION

The system equations of motion may be combined in complex form

by the following representation.

Z= X + iY (4.18)

The Eqs. (4.17) combine to yield the following

+[(°_x2t°_u ito gV_xgv] Z=et, w2e"'t+ig (4.19)

where

Cx = P_x + Ux

C_--gu+vu

The unsymmetric stiffness and damping terms of Eq. (4.17) lead to

complex conjugate terms in Z. The appearance of the complex conju-

gate term Z in the complex vector representation implies the existence

of rotor backward precessive motion. The steady-state synchronous

precessive motion may be expressed as

Z =fe _'_t+ be- i,,,t (4.20)

where f is the complex amplitude of the forward precessive motion and

b is the complex amplitude of the backward component. Rewriting

Eq. (4.19) in the form

Z+Df2+DbZ+K_+ [Kf--iS]Z=et,to2e ''t (4.21)

Substitution of Z and Z and derivatives yield the following two equations:

(a) [ (Kf - ¢o2) + i(Dfto - S)]f-4- [Kb -4- itoDb ]-b = et,¢o2
(b) [ (Kf - co2) - i (Dyto + S)] b + [Kb -- ioJDb ] f = 0 (4.22)

Solving for the complex amplitudes f and b

[(Kf- co2)+ i(Dfco + S)] e.o) 2
f= (Kf - tn2)2+ ¢02(D_- D_)+ S 2-- K_b-4-2ito(DfS(Kf - to2)-- DfKt,)

(4.23)
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b = [Kb -- ioJDblf
[(Kf- to )- i(Df + S)]

The functions f and b which represent the complex rotor may be con-

verted into a real component and a phase angle by the following
procedure:

f A+iB AC-BD+i(CB+AD)
= = V-b- 

f= U + iV (4.24)

Zs= fei_t = Aft(,,t-B,) (4.25)

Expanding and grouping terms were obtained

V
As= _//_, Bf= tan-'

Thus the rotor displacement may be expressed in the real form

Z = A_e l(_t-B_) + Abe- t(,.,t-s.) (4.26)

Where the functions df and A b are the rotor amplification factors for

forward and backward synchronous precession, respectively. These

components combine to form ellipses in which the principal axis will

vary from the horizontal to the vertical position depending upon the

bearing damping and stiffness parameters. Figure 9 illustrates typical

rotor synchronous precession as given by Eq. (4.26). Notice that as

the rotor speed to increases, the semimajor and semiminor axes of the

elliptic orbit reach a maximum value and then reduce. Examination of

the functions A s and Ab reveals that they are speed dependent and have a
maximum value.

Differentiating the functions Af and Ab by to and setting the results

equal to zero, we obtain for the case of light rotor damping

_fmax _ _ cS; OJ "_-toc.f1

f
Abmax _ Acb; to "_"tocbJ

(4.27)

where tocy= critical speed for forward precession

. /to_x + tose__ . /Ks{ K,(Kx + KQ + 2KvKv}
= V 2 -- N 2M(K2 + Kx) (Kz + Ku)
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MORON---

MOTION

•I i ''_'1000

X

_0 l It
I 4D ZO 0 a.O 4.0'

FIGURE 9.--Rotor orbit patterns for synchronous precession.
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tocb = critical speed for backward precession

2 __ 2= . , /
2 ¥2M(K2 + Kx) (K2 + Kv)

When the rotor speed to becomes very high such that

to >> tocf; tocb

the rotor amplification factors .,4f and ,40 reduce and approach et, as a

limit. In Fig. 9, the rotor X, Y displacements are made nondimensional

with respect to the rotor unbalance et,. At very high to, the rotor orbit

becomes a circle of unity radius. This represents supercritical speed

operation in which the mass center M remains stationary and the elastic

center C traces out an orbit of radius et, about M.

In general, any rotor system which has nonsymmetric support flexi-

bility will exhibit elliptic orbits. As an example, in Chapter 5 are

presented oscilloscope traces of a high-speed rotor supported on air-

lubricated pivoted pad bearings. Since this rotor has nonsymmetric

bearing characteristics, it has distinct elliptic orbits.

4.6 NONSYNCHRONOUS ROTOR PRECESSION--SYMMETRIC BEARING
SUPPORT

The rotor synchronous precessive motion given by Eq. (4.26) is caused

by rotor unbalance. If the rotor were perfectly balanced (e, = 0), then

the rotor amplification factors/If and Ao would both be identically zero.

This implies that the steady-state synchronous motion is zero. This
transient rotor motion under normal conditions dies out with time if

damping is present in the system, leaving only the steady-state rotor

motion. The influence of internal or hysteresis damping causes the

motion to grow rather than die out at a particular threshold speed.

Robertson _ speaks of this as sustained transient motion. To investi-

gate the transient rotor motion, the homogeneous Eqs. (4.17) are ex-

amined. The two second-order equations have displacement cross-

coupling. By the elimination of one of the displacement variables,

the two second-order equations may be combined into a single fourth-

order equation in either X or Y. For example, elimination of the Y

coordinate results in the following fourth-order equation in X:

"X"+ [C_ + C_1"2" + [to_ + to_ + C_C_

2 2 " 2 2 2 --0+ [to_xCv + tocuCx]X + [toc_to_ + to _x/xy]X - (4.28)

s D. Robertson, "Hysteretic Influences on the Whirling of Rotors," Phil. Mag., S. 7,

Vol. 19, 1932, pp. 513-537.
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The assumption of a solution of the form X = ae _t leads to the follow-

ing algebraic equation in k

N=4

z4 n --k)k K : 0 (4.29)

K=0

4.6.1 Routh-Hurwitz Stability Criterion

Investigation of the stability of motion of Eq. (4.28) can be easily done
if the characteristic equation has been solved and its roots are known.
But equations of third order and higher are not readily solved without
considerable labor, although with the high-speed digital computer at our

disposal, this does not represent an overwhelming problem. The ques-
tion of stability in linear systems can be resolved without solving the

characteristic equation. The stability of the system is determined by
the sign of the real components of the roots to the characteristic equation.
The system will be stable and nonoscillatory in the steady state if all of
the roots of the characteristic equation have negative real parts. It will

be stable but oscillatory if the conjugate imaginary roots are all different.
It will be unstable if there are roots with real positive terms or if there
are repeated zero or conjugate imaginary roots.

Routh _ss)presented a method to determine whether any root contains a
real positive term by examination of the coefficients of the characteristic

equation. This procedure was later generalized by Hurwitz <as_in 1895
in determinant form. The Routh-Hurwitz stability array for N=4 is
given by

D_

Do D_
I
!

AI ] Ao
.... J

A3 A2

0 A4

0 0

02

0

A1

As
___.a

0

/)3

0

Ao

A2

A4

(4.30)

The condition of stability is that all of the Dn determinants must be

positive. For a fourth-order equation, these conditions are
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Do=A_=C_+Cy > 0

DI =AlA2-- AoAa > 0

= [C_ + Cv][toL + ¢o_v+ C_C_]

- [to_Cy + o_uC_]

= to_C_: + to_uC v + C_Cu(Cx + Cy) > 0

D.,---Aa[A_l--Acu_3]--A_A4 > 0

-=A3D_ --A4D] > 0

D3 = A4D2 > 0

(4.31)

The determinants Do and Dt are always positive definite functions in

the above example. The D2 determinant leads to the stability criterion
that:

[to_:_- to_] + [Cx + Cvl[Cxo_ v + Cyo_J > °J2bt_/xv[C_ + Cy]2 (4.32)
C_Cv

After some algebraic manipulation, the rotor threshold of stability is
given by

to8= OJc__ (4.33)

where

F, = (_e--_'_ _ [R 2+ D ] [R 2+ Da2]R 2(a + R )2(1 @ R )2(1 -- 0/)2
\ 92 ,/ {Or[(1 +R)2(R2+Da2)+(a+R)2(R2+O)]} 2

F._ - (R 2+ D) (R 2+ Da2) [a(R + a) (R 2 + D) + (R + 1)(R 2+ Da2)]

where

R K2 D D2
Kv DI

K,r

a=-- A= _cR°
Kv D2
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4.6.2 Symmetric Bearing Support

For the case of a symmetric foundation, the horizontal and vertical

bearing stiffness coefficients are equal

Ky = Kx = K1

and hence a = 1.

The stability criteria in this case reduces to

COs lima-'l _OJcRo_t_2

to--to F 1 / R2\
to < ,- cao_/_Rtl + _-) (4.34)

Example I

As an illustration of Eq. (4.34), consider the following example

K_ = K2 = 250 000 lb/in, R = 1

D_ = D2 = 200.rad/sec, D = 1

M = 0.25 lb-sec2/in

The rotor critical speed on rigid supports is

toc_ = = 1000 rad/sec

The threshold of stability is given by

to. = toc_ _F-l% (1 + DR---"')= 1000 (_/_22)

= 1414 rad/sec

Figure 10 represents a plot of the stability criterion of Eq. (4.34). This

simple relationship verifies a number of Newkirk's findings. 7

7 Recently C. Bellmot, apparently unaware of Newkirk and Kimbalrs early work, con-

ducted experiments on internal friction whirling to determine the influence of external

damping. He concludes that external damping forces favor stability and that the ratio of

the two frictions to one another plays a far greater part than their absolute values. His

experimental rotor is a close representation of the Jeffcott model. (See "The Effect of

Friction on the Stability of a Rotating Shaft," Brown Boveri Review, Vol. 49, No. 12, pp.
48-55, 1962, for further details.)
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For example, if the foundation is rigid, R = 0 and the rotor is unstable

above the critical speed. Figure 10 shows that, in general, the rotor

stability threshold is always equal to or greater than the system critical

,o // / /8.0

+.o // /

31# _7 1_23 _5/ REGION/I I /

f ,.0 _ c ,++,o
o.e ________._j ,_,-om ,-_/K_-CONSTANT

.-. STAmL,TYCONDI'r,o.:F'_ _ _
-- I RI - _'* _/tv/r,

oo<OOc_ I+g el
I11b.i0.4 -- . ,_K_'_2., CRITICAL SPEED OF FLEXIBLE_" 0,o __
e,- ('I'_Ro '_I'M- ROTOR ON RIGID SUPPORTS (CONSTANT) _7"

K2m ROTOR STIFFNESS
0.2 -- R-_ K--I ; KI .................

D ,, C_._z. C2=ROTARYDAMPINGCOEFFICIENT
C I ' C I zSTATIONARY DAMPING COEFFICIENT

0.1 ___L_ .... J..
0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 I0

STIFFNESS COEFFICIENT, R (DIM)

FIGURE I0.-Slability threshold of a flexible rotor with internal friction on a symmetric

elastic bearing support.

speed and is a function of the ratio of the damping terms CI and Cz and
the stiffness coefficients K_ and K2. Note that if no damping is intro-

duced into the foundation (D, = 0), the stability criterion reduces to

OOs_---OOCRo_f]'-]--_ _ O)CR

This implies that if we introduce bearing flexibility but no bearing

damping, we will reduce the system critical speed and the whirl threshold

speed. This does not seem to agree with Newkirk's findings that greater

stability can be achieved by foundation flexibility alone. The stability

criterion for a symmetric foundation states that both foundation flexi-
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bility and damping must be incorporated to increase rotor stability. To
r6solve this question, it is necessary to examine the influence of founda-

tion asymmetry on the rotor stability.

4.6.3 Rotor Precession Speed

The analysis of Sec. 4.6.1 does not furnish information on the behavior

of the system such as the rotor precession speed and the growth rate

of the unstable orbit. The Routh-Hurwitz stability criterion furnishes

us only with the onset speed at which instability begins. We shall see

in subsequent chapters that this criterion can give us misleading stabil-

ity information in certain limiting cases, thus requiring the development
of additional criteria.

To determine the rotor nonsynchronous precession rate, we proceed
as follows:

For a symmetric, balanced rotor, Eq. (4.21) reduces to the following

complex vector equation

+ DsZ + [kI- iS]Z = 0 (4.36)

where

D=_
D1

2 KzK1 _
ks = tOCR= M(_z + KO

Assume a solution of the form

Z = .4 e xt

This results in the following frequency equation

X_+ D_X+ kI--iS=O (4.37)

In general, the value of h is complex

h = P + il_
219-7200-6_-5



60 DYNAMIC STABILITY OF ROTOR-BEARING SYSTEMS o

Substitution of the above into Eq. (4.37) and separating real and imag-

inary parts results in

(a) p2 _ [12 + DiP + _y= 0 l (4.38)
l

(b) 2P_ + DyQ -- S = 0 J

By eliminating l-I from Eqs. (4.38(a), (b)), one obtains

4P 4 + 8Dj.P:' + (5D_ + 4_r)P 2+ (4Dfki+ D'])P + D'_kf-- S 2= 0 (4.39)

From the assumed form of the solution, it can be seen that if:

P>0

P<0

system is unstable (displacements will grow exponentially

with time)
system is stable (motion is damped out)

at the threshold of stability we have the condition that P= 0, which

implies

D]ks- S'_= O

or expanding

D_ [ ______ (1 + RZlZl = o (4.40)[l+R2] 4 --WZ+l+/{\ D/ J

Close inspection reveals that the bracket expression is the Routh stabil-

ity criterion of Eq. (4.34). If the hysteresis damping coefficient D2 is

nonzero, then the threshold speed is

:-- _Ocao 1 +_-toe

Notice that as D2 approaches zero, Eq. (4.40) is identically satisfied

and the Routh criterion is not applicable. We shall see later that appli-

cation of Routh's criterion in such limiting cases can be misleading.

An important parameter to examine is the rate of change of the real

root P. Near the threshold of stability, P is approximated by

s _ - o/Ay o_'t,o'- _ ]
P = Df[4Ay+ 19'}1=[1 + R2]Z[4_[:a +D_ [Dz+ D,R 2] (4.41)

Thus P is negative when ¢0 < co, and positive when oJexceeds the thresh-

old. In the limit as D,, approaches zero, Routh's criterion will predict

a threshold speed, but we see that in this case the real root P also ap-
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proaches zero. Hence the system is stable in this limiting case, since
the orbital motion will not grow.

By eliminating P from Eq. 4.38, we obtain

D 2 S 2

_-_4-4- (_£ -- ky) (4.42)

solving for _2

co2 [n,+n2"_2+ / nl+n2 2 _ 12

(4.43)

where

nl=Dl _ =stationary damping coefficient of the
supports

(1;n2 = D2 _ = rotating damping eoeffieient of the shaft

bearing

From Eq. (4.34) it was found that at the threshold of instability w = OJCR
(l -_- nl/n2). Introducing this conduction into the above, we obtain

2 _[n,A-n2"_ 2 • (__) 4 1°JcR _ 2 ] -'-_/ +2 _R(nl + n2)2 + c°_a

2

(4.44)

or

-- 2t_2p+--COcR oJ_,_=-_ (n, + n2)2

Consider only the positive root or that

when oJ= oJs

The above statement implies that at the threshold of instability, the

volume center C of the rotor will precess in a forward direction at a rate

equal to the first-system critical speed. Newkirk observed that the

rotor precession rate was equal to the first critical speed and that it re-

mained constant when the rotor speed was well above the threshold of

stability. To illustrate this, consider the following example:



62 DYNAMIC STABILITY OF ROTOR-BEARING SYSTEMS .

Example 2

Rotor conditions are identical to Example 1.

rate is given by Eq. (4.43) in modified form as

The whirl precessi_)n

top = \4toCR,]

note that

D 2 200 rad/sec ,_2= a aa._
x 706 rad/see] .....

Hence, expanding in terms of (4--_ca)'

1 D 2

or

top = toCR= constant

Thus, for all practical purposes we can say that the rotor precession

rate is constant over a wide speed range.

4.6.4 Analog Computer Program--No. 1

In order to develop a better understanding of the rotor behavior and

the transition from stable to unstable motion, the Eqs. (4.17) were pro-

gramed on the 1631 R PACE analog computer. (See App. B.1 for the

computer program and details.)

These equations were programed to include the effects of rotor un-

balance and gravity.

4.6.5 Whirling of a Balanced Horizontal Rotor

The first conditions run on the analog computer were those corre-

sponding to a balanced (e,, =0) horizontal rotor. When the computer

program was run for a number of speeds, including values well above

the threshold of stability, absolutely nothing happened! Newkirk had

observed that if the rotor system was well balanced, the rotor could

maintain stability well above the threshold value. He found that in

these cases it was necessary to give the system an initial disturbance

to initiate whirling. Examination of Eqs. (4.17), including rotor un-

balance, shows that they are satisfied by the following steady-state
values

Yo-- g
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_D2 oJD2g

Xo = tO2R(1 + R) 2 Yo = oj_R(1 + R) 2 (4.45)

Thus in order to observe whirl, the system must be given an initial

displacement from the steady-state equilibrium position. The initial
conditions used in the program were X0=X0=Y0=0 and Yo=YI(O).

The last condition states that, initially, only the foundation deflects while

the rotor is undeformed. Figure 11 represents the transient rotor

_=500

Y

=X 01

=J=706

Y Y

=,X _X

¢J=lO00 u=1450

FIGURE ll.--Whirl orbits of a balanced horizontal rotor below the threshold of stability,

oJ < to,. Conditions: M = 0.25 lb secZ/in., K_ = Kz = 250 000 lb/in., D_= D2 = 200 rad/sec,

to, = 1412 rad/sec.

motion of a balanced horizontal rotor for various speeds up to the stabil-

ity threshold. Note that when the undeflected rotor is released, it

oscillates about the steady-state equilibrium position, as given by Eq.

(4.45). As the rotor speed is increased, the hysteresis damping dimin-

ishes and the motion is not as rapidly damped out. At the threshold

of stability (o= 1450, a definite sustained orbit has developed which

does not damp out. Figure 12 represents the motion of the system when

the rotor speed is well above the whirl threshold speed. In this case,

when the rotor is released, it deflects and then goes into a rapidly in-

creasing spiral. At this speed the internal friction force has altered
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its characteristic from a damping mechanism to a driving force. The

rotor unstable precession rate is approximately equal to the rotor first

critical speed as given by Eq. (4.44). The rotor precession speed is

easily determined from examination of strip charts of the X-Y motion

of the system.

I MIL

X

FIGURE 12.-Whirl orbit of a balanced horizontal rotor above the threshold of stability,

to > to,. Conditions: toga = 706 rad/sec, to, = 1412 rad/sec, to = 1700 rad/sec.

Figure 13 represents the transient motion of a balanced horizontal

rotor from the speed range of 500 to 750 rad/sec. The conditions are

identical to the conditions stated in Fig. 11. In this figure, the top

trace of each set is a reference sine wave to represent rotor speed. The

next trace is the transient shaft Y motion of point C on the rotor, and the

lower trace represents the shaft horizontal motion. In the four speed

runs, it is seen that when the shaft is released, it oscillates about the

steady-state equilibrium position at a frequency equal to the rotor first

critical speed and is soon damped out. A change in running speed has

little influence on the rotor frequency of oscillation.



. ROTOR WHIRLING DUE TO FRICTION DAMPING

l) ROTOR PEEl) ca u 500 RAD/SEC

65

SHAFT Y MOTION

SHAFT X MOTION

2) ROTOR SPEED o_ - 577 RAD/SEC

SHAFT Y MOTION

SHAFT X MOTION

3) ROTOR SPEED ca - 650 RAD/SEC

SHAFT Y MOTION

SHAFT X MOTION

4) ROTOR SPEED to - 750 RAD/SEC

SHAFT Y MOTION

SHAFT X MOTION

FIGURE 13.- Transient motion of a balanced horizontal rotor with internal friction damping,

t_---500-700 rad/sec. Stability threshold, to, = 1412 rad/sec.
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SHAFT Y MOTION

SHAFT X MOTION

61 ROTOR SPEED ca - 1400 RAD/SEC

SHAFT Y MOTION

SHAFT X MOTION

71 ROTOR SPEED (_- 1450 RAD/SEC

, _t,_IAA_AAAA AnPAAA,1AAAAAA_t_A_AA AAI,'!A!
SHAFT Y MOTION

SHAFT X MOTION

8) ROTOR SPEED l - 1500 RAD/SEC

_1 _ I_! A_l__ ,_','_!_ _1 _ "_'_'_,_ it!li:l,,l,l!A Rill,,ilia, AI_',', <A11 i , ",,
SHAFT Y MOTION

',!tfltli',/_,,,i!!il,f!!li!_\:l_!':_!,i_',ili//I _,,, _,,,

FIGURE 14.-Transient motion of a balanced horizontal rotor with internal friction damping,

o_= 1000-1500 rad/sec. Stability threshold, ¢o = 1412 rad/sec.
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Figure 14 represents the rotor behavior in the speed range of 1000 to

1_00 rad/sec. In Run 5 where to= 1000 rad/sec, the frequency of

oscillation remains unchanged but the time required to damp out the

transient rotor motion has increased. As the rotor speed approaches

the threshold speed, as shown in Run 6, the time required for the

transient to diminish becomes extremely long. Once the threshold

speed has been exceeded, the transient motion is sustained and increases

as shown by Run 8 for to = 1500 rad/sec.

4.6.6 Whirling of an Unbalanced Rotor

A number of rotor orbits were obtained for conditions identical to

Example 1, but with the addition of rotor unbalance. The effect of the

rotor unbalance is to produce a steady-state rotor displacement similar

to that shown in Fig. 5. The rotor motion below the threshold of sta-

bility is synchronous precession as shown by Fig. 15. When the rotor

is released, the unbalance causes the rotor to spiral out and then settle

down into a stable synchronous motion.

When the rotor angular speed exceeds the threshold speed tos, the

system develops an additional component of nonsynchronous precession

as shown in Fig. 16. The nonsynchronous component greatly increases

the total rotor orbit even at speeds close to the threshold. For example,

the dashed circle about the origin represents the stable synchronous

motion caused by unbalance alone. If the cross-coupling terms

toX/_g_/zv X and toX/_--_g_/x_Y are removed from Eq. (4.17), this is the motion

that would result. When the rotor is released, it spirals outward and

returns to the vicinity of the steady-state synchronous orbit. The

nonsynchronous component causes the total rotor orbit to form an

internal loop. As time continues, the nonsynchronous component in-

creases, causing the internal loop to change to a cusp. Eventually

the motion becomes unbounded and the nonsynchronous precession
predominates.

At speeds well above the threshold, the motion becomes rapidly

unstable and the nonsynchronous component completely overshadows

the synchronous motion to produce a divergent spiral similar to Fig. 12.

Figures. 17 and 18 represent the X-Y traces of the rotor motion equiv-

alent to the rotor orbits of Figs. 15 and 16. In Fig. 17, the speed range is

from 500 to 750 rad/sec, which includes the rotor critical speed. In

Runs 1 to 5, the transient shaft motion quickly dies out and only stable

synchronous precession remains. As the rotor speed increases, the
size of the synchronous rotor motion increases and reaches a maximum

at the rotor critical speed of tocR = 706 rad/sec.

In Fig. 18, which illustrates the rotor motion in the speed range of

1000 to 1500, we see a sizable transient motion begin to develop. In
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Y

0

FIGURE15.--Whirl orbit of an unbalanced rotor with internal friction damping below the
threshold of stability, to< to_. Conditions: unbalanced rotor, M-0.25 Ib-sec'-'/in.,
KI=K_=250000 Ib/in., Di =D_=200 rad/sec, tocR=706 rad/sec, to_=1412 rad/sec,
to= 500 rad/sec, G = 0 (vertical rotor).

Run 6, a nonsynchronous transient motion is superimposed upon the

rotor synchronous precession. After the transient motion is suppressed,

the motion is stable synchronous precession as caused by unbalance.

Notice that since we are above the rotor critical speed, the shaft X-Y

displacements are considerably smaller than those shown in Run 4.

As the speed is increased, the nonsynchronous component becomes

more predominant until it completely overshadows the synchronous

component as shown by Run 8 for to= 1500 rad/sec.

4.7 WHIRLING OF AN UNBALANCED ROTOR--LIMIT CYCLES

Dr. Newkirk, in his investigations of rotor whirl behavior, observed

that once the rotor whirl motion developed, the rotor orbit would continue
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Y

X

FIGURE 16.-- Whirl orbit of an unbalanced rotor above the whirl threshold speed, to > to,.

Conditions: unbalanced rotor, M = 0.25 lb-secZ/in., K_ = Kz = 250 000 lb/in., DI = Dz = 200

rad/sec, OJca= 706 rad/sec, oJ,= 1412 rad/sec, to= 1500 rad/see, G=0 (vertical rotor).

to grow until it was stopped by the protective guard ring surrounding

the shaft. He observed that this spiral motion would be very gentle or

extremely abrupt, depending upon rotor speed, type of shrink fit, etc.

Occasionally he noticed that instead of the rotor orbit becoming un-

bounded, a finite quasi-steady-state whirl pattern would develop.

When this occurred, the orbit would increase when the speed was

increased, but the motion would still remain bounded. Closer investi-

gation of the system revealed that these phenomena occurred only when

the shaft deflection was large enough to cause the shaft to clamp the

bearings (rolling element) at the edge, reducing the effective rotor span

and thus changing the shaft stiffness characteristics.
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I) ROTOR SPEED W-500 RAD/SEC

SHAFT Y MOTION

SHAFT X MOTION

21 ROTOR SPEED w -577 RAD/SEC

SHAFT Y MOTION

SHAFT X MOTION

3) ROTOR SPEED W- 650 RAD/SEC

SHAFT Y MOTION

SHAFT X MOTION

4) ROTOR SPEED w- 750 RAD/SEC

SHAFT Y AND X MOTION

' t

FIGURE 17.-Transient motion of an unbalanced rotor with internal friction damping,

oJ = 500-750 rad/sec. Stability threshold, co,= 1412 rad/sec.
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51 ROTOR SPEED co - I000 RAD/SEC

SHAFT Y MOTION

SHAFT X MOTION

G) ROTOR SPEED ra = 1400 RAD/SEC

SHAFT Y MOTION

SHAFT X MOTION

7) ROTOR SPEED o_ - 1450 RAD/SEC

SHAFT Y MOTION

SHAFT X MOTION

8) ROTOR SPEED _- 1500 RAD/SEC

SHAFT Y MOTION

SHAFT X MOTION

FIGURE 18.--Transient motion of an unbalanced rotor with internal friction damping,

to= 10(O1500 rad/sec. Stability threshold, tos = 1412 rad/sec.
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The observations of Dr. Newkirk suggest that nonlinear shaft stiffness "

characteristics could produce limit cycles. In the investigation of the

linear Eqs. (4.28), the transient motion of the system was found to be
either stable or unstable; that is, at any given speed the motion either

increased or reduced exponentially. In certain cases, the rotor motion

near the threshold of stability appears to produce bounded orbits as

shown in the last figure of Fig. 11 for to= 1450. When the rotor speed

exceeds the threshold speed, the rotor motion diverges in all cases for

the linear system.

The system equations of motion were modified to include nonlinear

stiffness characteristics. The governing equations in complex vector
form are

Z+DsZ+ ['ky(l+SZZ)--iS]Z=roZei°'t+iG (4.46)

These equations were programed on the analog computer to include

the nonlinear effect. The analog computer program is given in Appen-

dix B.2. This program was run over a wide range of speeds for various
values of the nonlinear parameter 8. It was found that only several

percent change in radial stiffness characteristic was necessary to pro-

duce a limit cycle at the threshold of stability. Figure 19 represents

the rotor motion slightly above the threshold speed. In the linear case,

the total rotor orbit forms a slowly divergent spiral. The introduction

of the nonlinear component (8=0.01 and 0.04) causes a finite orbit to

develop. When the rotor speed is increased above the threshold speed,

the orbit grows but remains bounded.

\

(G) UNSTABLE OR81T

LINEAR SYSTEM -8 m 0

¢.D > OJ s

(b) FINITE ORBIT (C) FINITE ORBIT

NONLINEAR SYSTEM -8 - O.OI NONLINEAR SYSTEM-a-O.04

FI(;URE 19.-The effet't of nonlinearity on rotor motion above the threshold of stability.
Conditions: toe, = 706 rad/se_, to,= 1412 rad/sec, to= 1500 rad/sec.
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To date, all stability analyses of rotor-bearing systems have been based

oh the Routh-Hurwitz criterion which utilizes the small perturbation

approach. The previous figure illustrates the fact that the introduc-

tion of even small nonlinear effects can greatly influence the rotor

behavior at the stability threshold. Little attempts have been made

to analyze the magnitude of the nonlinear orbits or limit cycles. The

formation of limit cycles will also be discussed in a later section on

fluid film bearings. It shall be seen that the nature of the limit cycle

plays an important role in the concept of rotor stability.

For the situation represented by Eq. (4.46), where the degree of the

nonlinearity is small, a close approximation to the size of the limit cycle

can be obtained by the following procedure.

Assume a particular solution to the homogeneous Eq. (4.26) of the
form

ZL = Ae i°_et

where

top = rotor precession rate _- constant

A = complex amplitude of limit cycle

Substitution of the above into Eq. (4.28) and upon separation of real

and imaginary components results in the following conditions to be
satisfied

topDi- S = 0

ks(1 + &dA) - to_ = 0

Solving for the amplitude of the limit cycle

(4.46.1)

(4.46.2)

From the linear analysis

Hence

totocRDi
S

[A[= _/[(_) 2- 1]_ (4.46.3)

This states that the size of the limit cycle A is a function of the ratio

of the rotor speed to the whirl threshold speed and is also inversely

proportional to the square root of the nonlinear component 8.
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4.8 NONSYNCHRONOUS ROTOR PRECESSION--ASYMMETRIC BEARING "

SUPPORT

The analysis of Sec. 4.6.2 shows that with a symmetric bearing support,

damping must be introduced into the foundation to increase stability.

To verify Newkirk's findings that stability can be improved by foundation

flexibility, we will examine the stability criteria of Eq. (4.33) in detail

over a wide range of the flexibility parameters R and a, and damping

parameter D.

Equation (4.33) was programed on the digital computer to calculate

the rotor threshold of stability. These calculations are given in Tables 2

through 9. In each table, the ratio R of rotor stiffness to vertical founda-

tion flexibility is held constant and the horizontal stiffness Kx and

damping parameter D are varied. The dimensionless parameter .4 is

arbitrarily chosen and is a measure of the ratio of the rotor elastic forces

to the internal friction damping. In the absence of external damping,

.4 represents the rotor critical amplification factor. That is, at the

critical speed, the maximum rotor orbit is .4eg. For a lightly damped

system, .4 should be of the order 5 or larger.

The first column in the tables is a, the foundation flexibility ratio

K.JK v, where Ky is constant. The second column represents the ratio

of the horizontal system critical speed to the rotor critical speed on

rigid supports. The values in the third column represent the rotor

threshold speed in the absence of external damping. The values in the

remaining columns represent the rotor threshold speed for various

values of external damping. The rotor threshold speed is given in the

dimensionless form OJ,/tOCRo.

4.8.1 Zero Foundation Damping

When no external damping is introduced into the system D=_.

Taking the limit of Eq. (4.33) as D-* oo yields the stability condition

< +.><o+,,><.-o>.1:_--DT/[o_(I + R)=+(a+R)2I :]

Check: when a = 1

or

ot[(R + a) + t_(R + i)]
+ a2(R + 1)2+ (R + a) 2

<

1
60 < (.DCRol_R= O_CR

(4.47)
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The values of the rotor threshold for zero foundation damping are
•presented in Column 3 of Tables 2 through 9. These results are shown

in Fig. 20 which depicts the rotor threshold speed vs. the bearing founda-
tion stiffness ratio a for various values of the rotor flexibility ratio R.

I00
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40

2O=E

I
___t6.0
m

4.0

0
J
o 2.0
X

w
¢r

I-

_ 1.0

0

'1" 0.6

0.4

0.2

0.1
0.04 0.06 0.1 0.2 0.4 0.6 LO 2.0 4.0 6.0 I0 20

SUPPORT FLEXIBILITY RATIO, a (DIM.)

FIGURE 20. --Effect of unsymmetric bearing support flexibility on the rotor whirl threshold

speed, zero foundation damping.

Figure 21 shows as a comparison the stability for stiffness values of
R=0.1, 1.0,'and 10.0. Examination of the stability curve for R=10
shows clearly the influence of even small changes in a on stability. For

example, for R = 10 and a= 1, the threshold is 0.3 of the rotor critical
speed. Increasing a to 2 improves the threshold ratio to 10, while a
reduction in a to 0.5 causes the stability threshold ratio to increase to 20.
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FIGURE 21.-The effect of unsymmetric bearing support flexibility on the rotor whirl

threshold speed for various values of R, zero foundation damping.

At low values of R, that is, when the vertical foundation is consider-

ably stiffer than the rotor, very little change in performance is obtained

by varying the horizontal stiffness. As the values of R increase, a

change of a from unity causes an increase in stability. Notice that

stability is improved both by increasing as well as decreasing the hori-

zontal bearing stiffness. There are asymptotes to the stability limit

(Fig. 20) that will be obtained as ot approaches zero or infinity. Note

that for rotor stiffness ratios of R = 1 or higher and a > 1, there are

optimum values of a for each R value to obtain maximum stability.

Increasing the horizontal stiffness above this value causes a reduction

in stability. Thus little improvement in stability is gained by having

ot greater than 3.

To more vividly illustrate the rotor stability characteristics in the

absence of foundation damping, Figs. 10 and 20 were combined to form

a three-dimensional stability model which is shown in Figs. 22, 23, and

24. Figure 22 shows the stability model viewed in the direction of

increasing R. The model profile is fairly level for low values of R. As

the vertical foundation flexibility increases, the rotor critical speed

diminishes, as represented by the centerline a = 1.0. The model is

constructed into two segments which may be detached to permit exami-
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Figure 24 represents the seg- 
’ 

nation of the rotor threshold for large R. 
b e n t  of the stability model for the region (Y 1. 

4.8.2 Foundation Damping 

The stability model of Sec. 4.8.1 represents the lower limit to the 
threshold of stability. When foundation damping is introduced into the 
system, the stability will be improved. The data of Tables 2-9 were 
drawn up into field maps to illustrate the influence of damping on 
stability. For example, Fig. 25, obtained from Table 2, represents the 
rotor threshold for R = 0.1 and various values of the dimensionless damp- 

$ 

FIGURE 22. -Topological model of rotor stability characteristics with zero foundation 
damping, front view. 
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FIGURE 23. -Topological model of rntor stability characteristics with zero foundation 
damping. three-quarter view. 

ing parameter D. At this low value of R, very little increase in stability 
is realized by increasing the horizontal bearing stiffness. In this particu- 
lar case only when the horizontal stiffness becomes less than one-fifth 
of the vertical stiffness ( a <  0.2) is any appreciable gain in stability 
obtained. At the low values of R, the horizontal bearing stiffness must be 
of the same order of magnitude as the rotor stiffness to achieve an 
increase. 

Figure 26 represents the section for R = 0.5 (the vertical bearing stiff- 
ness is twice the value of the rotor stiffness). At this value of R, sub- 
stantial increases are obtained by introducing external darnping and 
hearing asymmetry. For values of D < 0.5, little change is obtained by 
increasing a over 1. In fact, for low D values (high external damping), 
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FIGURE 24. -Topological model of rotor stability characteristics with zero foundation 
damping, side view. 

increasing the horizontal stiffness will result in a reduction of stability. 
Note that in all cases, a reduction in a causes a rise in stability, this rise 
being more pronounced the higher the value of external damping present. 
Figure 27 represents the rotor characteristics for R = 1.0 and shows 
how these effects become more pronounced as R increases. 

4.8.3 Whirl Orbits of a Balanced Horizontal Rotor 

To illustrate the influence of foundation asymmetry on the rotor whirl 
threshold, consider the following example. 

Example 3 
Assume a rotor system with the following characteristics 

Kr = K ,  = 250 000 lb/in.: R = 1 
K r =  125 000 lb/in.: a=0.5 
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6.0 8.0 IO.O

FIGURE 25.-- Effect of unsymmetric bearing support flexibility on the rotor whirl threshold

speed for R = 0.1 and .4 = 5.0.

DI = D,, = 200 rad/sec; D = 1.0
M = 0.25 lb-sec2/in.

The above conditions correspond to Examples 1 and 2 with the modi-

fication that the horizontal stiffness Kx has been reduced to 1/2 Kv.

The system natural resonance frequencies in the X and Y directions,

respectively, are

tocv = tOca, I_R = 0.707 tOcm

tacx = tOca, = 0.577 OJca,
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FIGURE 26.-Effect of unsymmetric bearing support flexibility on the rotor whirl threshold

speed for R=0.5 and A =5.0.

where tOcm = 1000 rad/sec.

The rotor whirl threshold speed is given by Eq. (4.33) and is

tos = tOcao _ + F_ = 3230 rad/sec.

A comparison of this value to the results of Example l reveals that the

threshold has been increased almost 130 percent by reducing a from

1 to 0.5. This effect is clearly seen in the stability map (Fig. 27) for

R = 1.0. The results of the first example are represented by the inter-

section of the lines D= 1.0 and a= 1.0. Keeping D constant and de-

creasing a to 0.5, we see that a rapid rise in stability occurs. Notice

that if Kx were increased instead of reduced, there would be a slight
drop in stability for ot slightly larger than one and then a gradual increase

in the threshold occurs for larger values of or.
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FIGURE 27.--Effect of unsymmetric bearing support flexibility on the rotor whirl threshold

speed for R = 1.0 and ,4 =5.0.

To visualize the motion of a balanced rotor under these conditions,

analog computer traces were made of the rotor motion up to the thresh-

old speed as shown in Figs. 28-31. In Fig. 28, the rotor motion is

given for the speed range of 500 to 1450 rad/sec. Notice that at 1450

rad/sec, the rotor motion is extremely stable, whereas for the case of the

symmetric foundation (Fig. 11), the rotor is at the threshold of stability.

Figure 29 is of interest as it illustrates that the rotor transient motion

exhibits both net forward and backward precession. For example, the

rotor motion from time 0 to T is net forward precession and then the

motion reverses from T, to T., and backward precession predominates.

The motion continues in this fashion until it is completely damped out.

Figure 30 represents the rotor motion from 1700 to 2500 rad/sec. After

a particular speed is obtained, the backward precession component is

suppressed and only net h)rward precession is observed in the transient

motion. Figure 31 illustrates the rotor motion below and above the rotor

threshold. As the rotor speed approaches the threshold speed, the time
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o_ =500 RAD/SEC

X

_ Y X Y

;

(_ = 706 RAD/SEC bJ - I000 RAD/SEC (_ - 14SO RAD/SEC

I MIL

STABLE TRANSIENT PRECESSION (FORWARD AND BACKWARD)

FIGURE 28.-Stable transient precessive motion of a balanced horizontal rotor with foun-

dation asymmetry, 00=500-1450 rad/sec. Stable transient precession (forward and

backward). Conditions: M = 0.25 lb-sec2/in., K U= Ks = 250 000 lb/in., Kx = 125 000

lb/in., Di = D_ = 200 rad/sec, o_s= 3230 rad/sec.

required for the transient motion to die out increases. Once the thresh-

old is exceeded, the transient grows rapidly in the case of the linear

system, as shown by the second figure of Fig. 31.

4.8.4 Whirling of an Unbalanced Rotor

The addition of rotor unbalance does not effect the whirl threshold

speed in the linear system, but it does introduce a particular solution

composed of synchronous forward motion as described by Eq. (4.26).
Figure 32 represents the steady-state synchronous orbits of a rotor with

identical conditions to Example 3. If the rotor speed is below the

threshold speed, the transient motion as shown in Figs. 28-30 will die

out, and only the rotor synchronous precession caused by unbalance

will remain. In Fig. 32, the computer program was run for a sufficient

time to eliminate the transient. As the rotor speed approaches the

threshold speed, the time required for the transient to disappear in-
creases. Note that the rotor trace for to=3000 rad/sec still shows a

slight nonsynchronous whirl component even after 300 cycles. Since

the time scale of the analog program is 1/1000, this represents 10 rain

of running time on the computer.
219-720 0-66--7
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FIGURE 29.-Forward and backward precessive motion of a balanced horizontal rotor with

foundation asymmetry, ¢o=1000 rad/sec. Conditions: M=0.25 lb-secZ/in., Ku=K'z

= 250 000 lb/in., Kx = 125 000 lb/in., DI = D_ = 200 rad/sec, oJ = 1000 rad/sec.

Dr. Newkirk noted that if his experimental rotor was running smoothly

near the threshold speed, a disturbance to the system would cause the

rotor to whirl. He observed that the time required for the whirl to damp

out increased as the rotor speed approached the threshold.

At the threshold of stability, a strong nonsynchronous component

develops. The whirl orbit formed is almost a stationary pattern com-

posed of four internal loops (two of which are degenerate), indicating the

presence of a one-fifth harmonic, s

The calculation of the rotor precession rate by a method similar to

Sec. 4.6.3 shows that in general

cocx "4- cocy
cop -- (4.48)

2

s When a stationaSy whirl pattern is developed, the subsynchronous frequency is equal

to to/(l + number of internal loops).
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PR£CESSION PRECESSION MOTION ONLY
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FIGURE 30.-Stable transient precessive motion of a balanced horizontal rotor with foun-

dation asymmetry, to=1700-2500 rad/sec. Stable transient precession (forward and

backward). Conditions: M = 0.25 lb-seC/in., Ku= K2 = 250 000 lb/in., K_ = 125 000

lb/in., D_ = D2 = 200 rad/sec, (o, = 3230 rad/sec.
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FIGURE 31.--Stable and unstable transient motion of a balanced horizontal rotor with

foundation asymmetry, to=3000 and 3500 rad/sec. Stable and unstable transient pre-

cession. Conditions: M=0.25 lb-sec=/in., Ku=Kz=250000 lb/in., Kz=125000 lb/in.,

D_ = D2 = 200 rad/sec, _0s= 3230 rad/sec.
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(,O-400

W =$2OO t0=2_

(aJ • 707

FIGURE 32.-Steady-state whirl orbits of an unbalanced rotor with foundation asymmetry,

¢0 = 400-3200 rad/see. Conditions: M = 0.25 lb-secZ/in., Kv = Kz = 250 000 lb/in., K_

= 125000 Ib/in., DI=D._=200 rad/sec, ¢o_s=577 rad/sec, ¢0_v=707 rad/sec, oJ,=3230

rad/sec.

The rotor precession rate for Figs. 32-34 is (577 + 707)/2 = 641 rad/sec.

Notice 5¢0e = 3205 is approximately the whirl threshold.

Figure 33 shows the rotor motion at the threshold for a large number

of cycles. This whirl pattern is very reminiscent of whirl orbits of

certain gas-bearing rotors at the threshold. (We shall see later that

the analog computer programs developed in Ch. 4 may be used to ap-

proximate fluid film whirl.) Only if the nonsynchronous component is

an exact portion of running speed will a stationary pattern develop.

In Fig. 34, the operating speed is above the threshold. In this case the

nonsynchronous component grows rapidly and predominates over the

synchronous motion.

For the case of the system under consideration, the rotor motion may

be roughly classified into four regions as follows:

1. Subcritical speed region

2. Critical speed region

3. Postcritical speed region

4. Supercritical speed region
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FIGURE 33.-Whirl orbit of an unbalanced rotor'at the threshold of stability, ¢o = cos. Con-

ditions: M = 0.25 lb-sec2/in., K v = K2 = 250 000 lb/in., K._ = 125 000 lb/in., D_ = Dz = 200

rad/sec, co = 3200 rad/sec, co8= 3230 rad/sec.
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FIGURE 34.-Whirl orbit of an unbalanced rotor above the threshold of stability, oJ=4000

rad/sec. Conditions: M = 0.25 lb-secZ/in., K_ = Kz = 250 000 lb/in., K_ = 125 000 lb/in.,

D_ = D2 = 200 rad/sec, oJ_= 3200 rad/sec, oJ = 4000 rad/sec.
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The divisions between the different regions is somewhat arbitrary, 9

but in general the following convention can be made: the subcritiCal

speed region is defined as the speed range in which the rotor phase angles

fix and flu are less than 90 °. The critical speed range is the region

bounded by fix: 90 ° and flu = 90 ° and represents the region where the

largest rotor orbits due to unbalance occur. In the postcritical region,

both fix and flu are greater than 90 ° but less than 180 °. In the super-

critical region, the rotor-phase angles are approximately 180 ° represent-

ing complete inversion of the rotor mass and elastic axes. For example

in Fig. 32, the rotor-phase angles are approximately 180 ° at to = 2500

rad/sec. The rotor orbit becomes a circle of radius et, and would remain

at this value, regardless of speed if self-excited whirl instability did not

take place. It is important to note that self-excited whirl instability

cannot occur in the subcritical speed region, but only in the postcritieal

speed region or higher.

4.9 GENERAL EQUATIONS OF MOTION

4.9.1 Discussion of System

The derivation of the equations of motion presented in Sec. 4.4 lack

in generality and cannot be easily extended to a more complex system,

which includes bearing mass, large damping forces, and rotor accelera-

tion. The general equations of motion may be readily obtained from

l,agrange's equations of motion, provided the system kinetic, potential,

and dissipation functions are known. The only quantity which presents

some difficulty is the proper representation of the internal friction forces.

The internal friction force cannot be derived from a potential function

(system would be inherently stable), but must be obtained from a dis-

sipation function of the proper form. This seems logical, since the

internal friction assumes the characteristics of a damping force in the

subcritical speed range.

Thus to properly investigate stability, it is necessary to examine the

performance of nonconservative systems in which the dissipation func-

tion has particular properties. For example, Chapter 3 shows that the

conservative Jeffcott system derived from only the potential and kinetic

energy does not produce self-excited whirl, contrary to the recent papers

by Green (22) and Kane (4s).

9 The arbitrariness of the division of the different speed regions increases with the
external damping present. For example, Fig. 5 shows that if the system is critically
damped, the rotor amplitude increases uniformly from 0 to et, without the indication of a
critical speed vibration. The division of the speed range may still be made in this case
by the examination of the rotor phase angle.
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• 4.9.2 Derivation of General Equations of Motion

• The position vectors to the mass stations are given by

ml: bearing mass

op M1=Xlnx + Y_nu

97

(4.49)

m2: rotor mass

op M,= (Xz + X2 + e,, cos cot)nx

+ (Y, + I"2+ e,, sin cot)n v (4.50)

if cot is replaced by 0, the system possesses five degrees of freedom and

hence five equations of motion will be required to completely describe
the system.

The velocities of the mass stations are given by

ml:

m2:

s V u,/o = (_, +._z -- e,,0 sin 0)n_

(4.51)

+(I _, + I;'2+ e,,0 cos 0)n-'+y (4.52)

The kinetic energy of the system is given by

T= ½ {M2[(z_, +)(2-- eg0 sin 0)2"J-(El _- Y2 + eft0 cos 0) 2]

+ m,[_" _+ Y_]+ _02 } (4.53)

The potential energy of the system is given by

V = ½ [KxX] + Ku_] + ½ K_[XZz + Y_2] (4.54)

The dissipation function caused by the external damping is given by

D, = ½ C,[J_ + _] (4.55)

and the dissipation function caused by the internal rotor friction can be

obtained from the force relationship Eq. (4.14) and is given by

rL:+D2 = C2 [------_--+ co(Y2X: (4.56)
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Close investigation of the dissipation function D2 shows that it may be "

expressed in the following form

where

_b= rotor attitude angle = tan-' X--z2
Yz

_= rotor precession rate

Thus when the rotor precession rate _ is zero, the internal friction

dissipation function assumes the characteristics of conventional viscous

damping. It is very important to note that only in the case when the

dissipation function has this special characteristic of being dependent

upon the rotor or bearing precession rate can self-excited whirl instabil-

ity be developed. When the system damping terms are represented

entirely by functions of the form in Eq. (4.55), the system is inherently

stable.

The governing equations of motion of the system are obtained from

Lagrange's equation, which states

d

aq, aClr--
(4.58)

where L = T-- V

Application of the above for the five generalized coordinates yields

the following equations

X,: m,X, + m., [4, +._z - e,,0" sin 0 + et,(0) 2 cos O] + C,f_, + KxX, = 0

(4.59)

Y,: m,I ), + m2 [I), + I), + et,0" cos 0 -- e,,(0) 2 sin 0] + CI YI 31-KuY' = 0

(4.60)

Xz: m2[Xl+X2--e,,0 sin O--et,(b) 2 cos O]+Cz[Xz+toYz] + K.zX2 =0
(4.61)

Y2:m2 []), + ])2 + e,0 cos 0 -- ett(0) 2 sin 0] + Cz(Y2 -- toX2) + K2Y.z _-- 0
(4.62)

0:_'0 + m2 [-- (X, + X2)e,, sin 0 + (Y, + };2)e,, cos 0

- (J_l + X2)be,, cos 0 - (_', + _'2)0e,, sin 0

+e_O]--mz[--(._, +./(z-- e,,O sin O)e,,O cos 0

-- (_', + }'z + e,,O cos O)e,,O sin O] = T
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Ul/On simplification

• 0 + m2 [-- (31 +._2)et, sin 0 + (_;, + Y2)e,, cos 0 + e_0] = T (4.63)

Neglecting rotor acceleration, the five governing equations reduce

to the four following equations

where

(l+Sm_(,+X2+Dj(,+co2_X,=e,,co 2 cos cot (4.64)

(l+Sm)Y_+Yz+D,Y,+co_Yl=e,,co 2 sin cot (4.65)

X,+X2+D_2+D2coY2+co_X2=e,,co 2 cos cot (4.66)

_z1-4- Y2 + D2 }z2 -- D2coX2 + cozzYz= e_co 2 sin cot (4.67)

ml
8m=--

m2

co_= K____
m2

co2 = K____v
Y m2

2 K2 co_ao
co2= m---_=

The above four equations can be represented by two complex equa-
tions in Z_ and Z2. The introduction of foundation asymmetry will give

rise to a complex conjugate term in Z_.

co2 +co2 .2 _ co2 _
(1 + 8m)Z, + Z2 + D,2, + _ Z, + _ Z, = et, coZe_°'t

2 2

Z, + Z2 + D2Z2 + (o_2 -- iD2co)Z2 = et_co2ei'°t

(4.68)

(4.69)

4.9.3 Uniform Foundation Flexibility and Zero Bearing Mass

If bearing mass is neglected and the rotor is considered as balanced,

that is ml--0 and e,, = 0, the system reduces to

mzZ + C,Z, + K,Z,(4=66s)0 (4.70)
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where

and hence
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m2Z + C2Z2 + [K2 -- iC2to]Z_(4.=69)0

Z=ZI +Z2

C,Z,+K,Z, = C,2_+(K,(4.7o.4.71) -iC_o)Z_(_o_-F_

For the case of light damping where tnC,/K_ and toC,,/K,, < 1, then

(4.71)

(4.72)

Z, = (K" -_,C't°) Z.,= Z-- Z.,

Solving for Z., in terms of Z

Z KdKi + K2 + iC2oJ)

(4.73)

(4.74)

Equation (4.72) may be expressed in the following form

(a) V'--_= -- (C,Z, + K,Z,) ]

J(b) _ = - [C.,Z2 + (K., - iC.,co)Z.,l
(4.75)

Divide Eq. (4.75a) by KI and Eq. (4.75b) by K_ and add, and solve for Fc

• iC.,oJ
K,K2 [__I Z + (__.z_ __I) Z., _ ___.z Z,, + Z ] (4.76)"-_- K1 + K2

--, 2
.'.F_ ¢4.,6.=-4.74)tL/ [CIK2 + (C.,K, - CK.,) \(KI-4-K2)z+(C2_)2}J K, +K2

(C.,to)2 _ C._oK'_.(K, + K2) ] Z
+ [(K,K.,-+ (K,+K.z)_+(C.zta)2]-i (K,+K._)27+TC_)ijK--T--_.z }

(4.77)

The complete equations of motion of the whirling rotor (neglecting

bearing mass) is given by
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r D,K2 __D2K1-D,K2 [¢o_(oJ_+__oJZ_+/o2o,)]1 2
Z._+ L_ K, - K2 [(oJ_ + oJ_)2 + (O2co)2jj

(D2_)21 ¢o_¢o_+ (to2 + to_)2+ (D2to) 2-4 KI + K2
D2¢o¢o_(co_+ ¢o_) ] _

i (_ ¥ _-_2_)_]z
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- e to2e ira (4.78)
(4.7_', 4.77) p"

For the range of speeds to be considered and with light damping the

parameter

_] _ 1 (4.79)

Hence upon reduction:

_+[D2(_)2+D,(\_]K2 ]Zlz, + [tOUR_ iD2(j \KII(1+ KJ]2c°]ZJ

= etdo2e i°_t (4.80)
(4.78, 4.79)

Note that Eq. (4.80) is identical to Eq. (4.36) of the original derivation.

4.9.4 Approximate Effect of Bearing Mass on Stability

Assume that the system is being driven with constant angular velocity

co and that the foundation support is uniform in all directions.

tions (4.68) and (4.69) reduce to

+ 8mZl + D1Z_ + to,Z1 = etgo2e it°t

+ D222 + (oJ_-- iDzto)Z2 = e_,to2ei'_t

Equa-

(4.81)

(4.82)

Combining the above two equations in terms only of the complex rotor

deflection Z2, we obtain, after considerable manipulation, the following

third-order complex equation

[D, + Dz(1 + 8m)] Z2 + [coy+ ¢0_+ D,D2 -- iD2¢0] Z2 + [to_D, + to_D2

- iD,D2to]22 + to_[tozz - iD2to]Z2 = e,,¢oz [co_ - 8into 2 -4-iD,to]e _'°t (4.83)

In general, the above equation may be written as

R[2_ + (R2- iI2)22+ (R, - il,)2., + [Ro- iIo]Z2 = Fr -4- iFi (4.84)
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where
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R3 = Di + D2(1 + 8m) la = 0

R2 = to2 + to2 + DiD2 12= D2to

Rl = to2Dl + to2D2, 11 = DiD2to

Ro = to2tol22 Io = D.,toto_

Considering only the homogeneous equation, let

Z2 = Zoe (P+ts)t

Separating real and imaginary quantities

Re: R3P3+R2P2+R,P+Ro - [3R3P+R2]S2+ [212P+I,]S =0 (4.85)

lm: - RaS 3 -4-I2S 2+ (3R3P 2+ 2R2P + R_ ]S - [Io + I,P + 12P 2] = 0

At the threshold of stability, P = 0 and the real part reduces to

Re: R2S 2 - liS - Ro = 0 (4.86)

Solving for the positive root of S to obtain the rotor precession rate

to,to2 [ D_D2to

S+ = top - X/toy + (1 + 6m)to_ + D,D2 × [2to,to., X/[toy + (1 + 8m)to_] + D,D.,

+ _l-t D,D2_ ] (4.87)
2to,oJ2 X/toy + (1 + 8m)to_ + D,D23

Order of Magnitude Analysis

To determine the relative magnitude of the various parameters, a

sample calculation will be made corresponding to a lightly damped rotor.

Let

lb-sec 2
M = 0.25 ---7------ (96.6-1b rotor)

In.

K1 = K2 = 250 000 lb/in.

2 2 K 1 × 106 radZ/sec 2
tol = 0)2 =M=

D_ = D2 = _- = 200 rad/sec
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• ¢0CRo= = 1000 rad/sec

= rotor natural frequency (on rigid supports)

[ K,K2 _2_tOca = N/M(E _ _:2) = 706 rad/sec

the rotor precession speed is given by

S=_IM{K,+(I+-_m)K2}+D,Ds{/_z+'_ 1-t 2 RVR--_2J

ao = h,2,.,2 -- IN12WlUS 2 -- _v

R2 = M {K, + (1 + _m)Kz} +D_Dz _- 2 x 106

2 X/RoR2 = 2.828 z 109

D_D2 = 4 x 104

to_lx10 a

D_D2oJ _ 4 x 10 r

and

DIDz_

2X/-ffoR 
__ -- 1.414 x 10 -z = 0.014

Thus in the normal turborotor the parameter

DID2¢o
--_1

2V-RoR 

and hence the precession rate is approximated by

K,D  /-Eoo (4.88)S = K1 + (1 + Sm)K2)M= R2

Note that if bearing mass 8m= mJMz = 0, then the precession rate is

S [ KlK2

= _/M(K-_ T Kz) system critical speed of Sec. 4.5
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The assumption that S=toe is known at the threshold greatly sim-

plifies the stability criterion. Combining the Re and Im equations oT

Eq. (4.85) and taking the limit as P--_ 0 results in the following equation

Solving for the threshold of stability

[ ]R2

to = LR3 R-2-R'-] toe (4.90)

](4.88, 4.89) D2 1 -- R2 Di tot'2_ to12

Evaluation of the threshold of stability by Eq. (4.90) shows that the

addition of bearing mass lowers the threshold of stability when tos > toCR-

For example, very high values of 8m cause the foundation to act as a

rigid base and tos approaches Eq. (4.40) as a limiting case.

4.10 GENERAL STABILITY ANALYSIS

A very general stability analysis of the rotor system as shown in Fig.

7 may now be made. This analysis includes the effects of bearing mass
and is not restricted to small values of damping as is the analysis of

Sec. 4.6.1.

Assume a complementary solution to Eqs. (4.64-4.67) of the form

XI = AeXt; Y_ = Be xt

X2 = CeXt; Y2 = De xt

results in

[_2 (l+Sm)+D,k+K_,] 0 k2 0

0 [)t2(l+6m)+D,k+Ku] 0 _2

)k2 0 [k2+ kD2 + K2] D2oJ

0 k2 -D2to [ka + D2Jk +K2]

I" --

A

B

C

ID

= 0 (4.91)

Since the coefficients A, B, C, D are arbitrary, the determinant of the

coefficients must vanish. Expanding the determinant we obtain the

following eighth-order frequency equation in k.
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{Sm}2h s + {2_im[(1 + 8m)D2 + D,]})_ 7

+ {(1 + 8m) 2 (2K., + Dzz) + (3 + 45m)DID_

+ _i,,,(Kt_+ Kx) -- 2(1 + 8m).K2+D_}h _

× {2(1 + 8m)[D_ (2K_ + D_ + D.,K.,(1 + 8m)]

+ D,(Kx + Ky + 2K2) + D2[(1 + 25m) (Kx + Kv)

+2D_]}k 5 + {(1 + 5m) [(K_+ Ky)(2K._, + D_)

+ 4D,D._,K., + (1 + 8m)(D_._,to2+ K._Z,)]+ 2D_D2(K_,

+ K_) + 2D_K._, + D_D_ + KxKy-- K.,_(Kx + Ku)}_ 4

+ {(1 + 8m)[K._,(K_: + Ku)2D=, + 2D._,+ 2D,(D'Z.,_to2+ K2)]

+ D,(K_ + Ky)(2K2 + D2._,)+ 2D.,(D2K._,

+ K x K v)} k3 + {(1 + 8m)(Kx + K u)(D._to2+ K_)

+ 2DID.,.K._,(Kx + Ky) + D_to 2+ K_:Ky)

+ K.,(D2K._,+ 2KxKy) }_t2

+ {D,(D_¢o2 + K'Z2)(Kx+ Kv) + 2D._,K._,KxKu})t

+ KxKy[D2._,oJ2+ K.Z,]= 0 (4.92)

N=8

A._k_ k= 0
K=O

Equation (4.92) is of the form

Thus instead of a fourth-order equation as was obtained in Sec. 4.6.1,

the introduction of bearing mass and large damping forces requires an

eighth-order system. If bearing mass is neglected, Eq. (4.92) reduces

to a sixth-order equation which is equivalent to :a three-degree-of-free-

dom system.

For systems larger than fourth order, the Routh-Hurwitz determinant

method becomes cumbersome and unwieldy to use. In such cases, the

original Routh method is preferable. This method is outlined as follows:

Consider the following array of coefficients:

Ao Az A4 As As

A, Aa A5 A7
Ci C2 C3 C4
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D1 D2 03

El E2 E3

F1 F2

GI G2

Hi

Cl = A2- AoA3/AI, C3: As-AoAv/AI

C2 :A4-AoAs/AI; C4--As

Dl = A3- AIC2/CI; D3= A7- AIC4/CI

D2 -_-A5 - A|C3/CI

El = C2 -- CID2/DI; E3 = D3

E2 = C3 -- CID3/DI

FI = D2 -- D1E2/E1; F2 = D3 - D,E3/EI

G1 = E2 -- EIF2/F1; G2 = E3

Hi = F2 -- FIG2/GI

The necessary and sufficient condition of stability is that all of the

coefficients of the first column of the array must be positive.

4.10.1 Digital Computer Program

A digital computer program for the Honeywell 1400 computer was
developed to calculate the threshold of stability of Eq. (4.92) by the

general Routh procedure as outlined. Since the coefficients of the

characteristic equation are speed dependent, an iterative approach was

employed to obtain the threshold speed. The method consists of assum-

ing an initial value of to and calculating the coefficients A0 to As. If

these are all positive, the program continues, calculates the Routh

coefficients and tests to see if any coefficient in the first column is nega-

tive. If no negative coefficient appears, the initial value of to is incre-

mented to a new value and the process is repeated. If a negative coeffi-

cient appears, the next value of to is obtained by averaging the unstable

speed with the last previous stable value. This procedure is continued

until a convergence criterion is satisfied.

The computer program is presented in detail in Appendix C. Follow-

ing the program listing are two typical cases illustrating the iterative

procedure. To obtain these two examples, print statements were in-

serted into the computer program to obtain the values of the coefficients

for each to value. For example, in the first case, D=0.0, R= 1 and

= 0.5, the Routh coefficient F_ becomes negative after seven iterations

and to converges to within 1 percent of the threshold value in seven more

steps.
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Table 10 represents a comparison between some typical values of

, the approximate system of Sec. 4.8 and the general solution of Sec. 4.10.

The table shows that for zero foundation damping (DI = 0), the approxi-

mate solution indicates a slightly higher threshold of stability. When

external damping is introduced into the system, the stability threshold

for the exact solution increases rapidly. At D = 1 (D_ =200 rad/sec), the

general computer solution indicates that the threshold value is over

40 percent larger than the approximate analysis. When the external

damping was doubled to D1=400 rad/sec, the computer program did
not find any negative values in the leading Routh coefficients. (When

the rotor speed to reaches 100 times the critical speed, the system is

assumed stable and the iterative procedure is discontinued.)

TABLE lO.--Comparison of the stability threshold of approximate and

general system for R = 1.0 and various damping values

8M = 0.00

_tpproximate (table 6)......
Exact ...........................
Percent deviation ............

R= 1.0 A=5.0 c_=0.5 D2= 200

D_= 0 D_= 40 D_= 200 D_= 400

2.39
2.143

+ 11.5

2.62
3.683

- 29

3.23
5.50

--41

4.21
(')

Stable.

In the majority of cases examined, the Routh coefficient F_ was found

to be the term which indicates the system stability. In the computer

program, FI is determined by the difference between D22 and E2; Fig. 35
represents" a plot of these two functions--for various values of external

damping and over a range of rotor speeds. The threshold of stability

is determined by the intersection of D22 and E2. In a number of cases,

the values of D22 and E2 are only slightly different. As an example,

for Dz = 200 rad/sec, the values of D22 and E2 are very close and it is

difficult to determine the intersection point from the inspection of the

plot of the two functions. As the value of the external damping in-

creases, a point is reached in which the two functions will no longer

intersect. Note, in Fig. 35, for D_=400 rad/sec, D22 and E2 rapidly

diverge. In this case, since the coefficients G_ and H1 are also positive,

it seems to indicate that the system is stable.

Since the numerical operations involve the sum and differences of

some large numbers, it was considered possible that numerical insta-

219-720 0-66--8
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FIGURE 35.--Routh stability coel_cients at various rotor speeds. Stability condition no.
12: F_ =D22--E2 > 0 for stability.

bility could be occurring, particularly for such cases as D, = 400 of Fig.

35, which shows the two functions D22 and E2 diverging.

To insure greater accuracy in the calculations, the computer program

was rewritten in Fortran IV language for the IBM 7094 computer to make

use of a double-precision routine. In this routine, all calculations were

carried out to 16-place accuracy. Results calculated with double pre-

cision indicate that Fig. 35 is correct.

Approximately 10000 data points were calculated using the double-

precision routine. These points represent the rotor stability charac-

teristics over a wide range of rotor, foundation flexibilities, and internal

and external damping values. Since a single point requires several days

to compute on a desk calculator, it is conservatively estimated that these

points would require 50 years to calculate by hand. The high-speed

digital computer does it in 15 min.

A selected group of performance charts, covering a range of internal

damping values, are given in Appendix C.

4.10.2 Rotor Stability With Symmetric Bearing Support

Figure 36 represents the stability characteristics of a rotor on a sym-

metric foundation with conditions that correspond exactly to Fig. 10.

Comparison of the two charts shows that for zero foundation damping,
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the approximate and the exact solutions coincide. Both predict the rotor

. will be unstable above the critical speed. As external damping is intro-

duced into the system, the rotor stability increases in much the same

manner as given by the approximate solution. In fact, considering the

number of terms deleted in the approximate analysis, it provides a sur-

prisingly accurate representation of the rotor stability characteristics.

The important point which the general analysis brings out, which is

not obtained from the approximate solution, is that for each given value

of external damping, there is a value of foundation flexibility which will

make the system entirely stable for all speeds. For example, in Fig. 36,

for D = 0.2 the rotor is completely stable for any flexibility ratio R > 1.0.

As the foundation damping is decreased, greater foundation flexibility

is requi_ed to completely stabilize the rotor.

To verify that this is indeed the case, the governing equations of motion

were programed on the analog computer. This analog computer pro-

gram is discussed in detail in Appendix B.3.

O. I0. I 0.2 0.4 0.6 0.8 1.0 2,0 4.0 6.0 8.0 I0.0

STIFFNESS COEFFICIENT, R |DIM)

FIGURE 36.--Effect of external damping and bearing l_exibility on the rotor whirl threshold

speed, symmetric support.
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FIGURE 37.--Steady-state whirl orbits of an unbalanced rotor from (o=400 to _0=5000

rad/sec, general system. Conditions: M2 = 0.25 lb-seC/in., Ku= K_ = 250 000 lb/in.,

K_=125000 Ib/in., D_=Dz=200 rad/sec, to_._=577 rad/sec, _cv=707 rad/sec, to,

= 5500 rad/see.

1 = relative rotor motion, 2 = foundation motion, 3 = total rotor motion.

The analog program was run for conditions corresponding to D = 0.2,

R = 1.0. It was found that when the R value was increased above 1.0,

no rotor instability was observed. (Also see Fig. 37.)

4.10.3 Rotor Stability With Unsymmetric Bearing Support

Figure 38 represents the rotor stability characteristics for R = 1 and

A = 5, which is identical to the conditions of Fig. 27. With no foundation

damping present, the exact and approximate solutions are almost identi-

cal for a > 1. When a < 1, the approximate solution indicates a higher

threshold of stability. In both cases, reduction of horizontal bearing

flexibility and increase in foundation damping produce a rapid rise in the

stability threshold.

In all cases, the approximate solution predicts that increasing founda-

tion damping will always raise the rotor threshold speed for a given value

of a and R. The exact solution shows a very interesting phenomenon

that for large values of a, increasing the foundation damping may actually

reduce the stability threshold. In Fig. 38, the value of ot = 3 represents

a crossover point with respect to the influence of damping. For exam-

ple, at R=3, and D= 1.0, the dimensionless threshold speed is 2.319.

Increasing the external damping by a factor of 5 (D = 0.20) only causes the

threshold speed to increase to 2.381.
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FIGURE 38.-Effect of unsymmetric bearing support flexibility on the rotor whirl threshold

speed for R = 1.0 and ,4 = 5.0, general system.

For values of o_> 3, the higher value of external damping actually

produces a lower threshold speed. If the foundation is constrained in

the horizontal direction, and only vertical motion permitted, the value

of a _ _¢. In this case we find that light values of external damping will

improve stability, but there exists a limiting damping value which will

result in a reduction of the threshold. For the case of extremely high

external damping, the threshold speed is depressed down to the rotor

critical speed (the foundation is acting as if it were rigid).

From Fig. 38, the rotor threshold for the conditions of a = 0.5, R = 1,

D = 1, and .4 = 5 is approximately 5500 rad/sec. This condition is also

shown in Fig. 35 for the value of D_ = 200 rad/sec. The approximate

stability analysis (see Table 10) predicts a lower threshold speed of 3230

rad/sec, and Figs. 32-34 represent the total rotor motion as predicted by

the approximate system. Figure 38 shows the interesting aspect that

for ot= 0.5 and D = 1.0, the rotor is on the verge of complete stability.

That is, if the external damping should be slightly increased or the hori-
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zonta] foundation stiffness slightly reduced, no rotor instability will be

encountered throughout the entire operating range.

To demonstrate this, the rotor motion was simulated by the analog

computer for the above conditions. Figure 37 represents the steady-
state orbits of the rotor for conditions identical to Fig. 32. Contrary to

Fig. 32, Fig. 37 shows that the rotor is stable to 5000 rad/sec. At the

predicted threshold speed of 5500 tad/see, the unstable orbit could be

easily suppressed by increasing the damping, or reducing the flexibility

ratio a. In the general analog computer program, the relative rotor
motion and foundation motion can be examined for various speeds as

shown in Fig. 37.

Figure 39 represents an extension of Fig. 38 to cover the range of a
from 1 to 100. At a value of a= 100, the foundation can be considered

as fixed in the horizontal direction, with only vertical motion allowable.

As the horizontal stiffness increases, the rotor threshold increases from
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speed for R = 1.0, A = 5.0, and a = 1.0 to 100, general system.
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0.7 to slightly over 2 for the case of zero foundation damping. Little

gain in stability is attained for a stiffness ratio of a > 10 for this case. As

light damping is added to the system, the threshold increases for all

values of a. When the foundation is constrained in the horizontal direc-

tion (a _ oo), Fig. 39 shows that the addition of light damping will improve

stability. It is important to note that when the external damping D1

exceeds the internal damping value, the stability is reduced for large

values of a. The physical reason for this is that the external damping

restricts the motion of the foundation. If the value of DI becomes exces-

sively high, the foundation will behave as a rigid foundation and the

rotor threshold will be at the critical speed. The maximum stability is

obtained by a symmetric foundation with a damping value of D = 0.2.

Note that when the external damping D1 is doubled to D=0.1, the

threshold is reduced from 6.0 to approximately 3.5.

In Fig. 40, the foundation vertical stiffness has been reduced to a tenth

of the value in Fig. 39. Here we see that the addition Of light external
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FIGURE 40.-Effect of unsymmetric bearing support flexibility on the rotor whirl threshold

speed for R = l0 and A =5, general system.
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damping produces startling changes in the stability characteristics. For

example, as a increases from unity for the case of zero foundation damp-

ing, the threshold value rapidly rises to four times the rotor critical speed.

When damping is introduced, the system becomes completely stable for

all speeds for a < 10. When the horizontal stiffness increases to c_ > 10,

the threshold reappears, depending upon the D value. If extremely

heavy damping is employed (D=0.1), a definite threshold exists for all

values of a. Thus Fig. 40 shows the important result that if the founda-

tion is 10 times softer than the rotor stiffness, the rotor may be completely

stabilized by the addition of small external foundation damping, or it may

be raised to over 4 times the rotor critical by bearing asymmetry alone.

Figure 41 represents the rotor stability characteristics for a range of

values of internal damlbing and no external damping. The smaller the

value of .4, the larger the amount of internal friction damping. For

example, if we assume the rotor critical speed to be 1000 rad/sec, the

value of .4 = 10 would correspond to a damping value of D2 = 100 rad/sec

and .4 = 1 is equivalent to D2 = 1000 rad/sec. As mentioned in Sec. 4.2,

actual measurements of the internal damping factor by Kimball indicate

that A should be of the order of 5 to 10, or larger. In this case, Fig. 41

shows that large increases in rotor stability are possible by the introduc-

tion of bearing asymmetry for .4 > 5. Figure 41 shows the important

conclusion that the larger the internal friction becomes, the less the

effectiveness of bearing asymmetry on improving the stability. In fact,

for the value of .4 = 1, the rotor stability threshold is below the rotor

critical speed. In this case rotor stability may be improved only by the

addition of external damping.

Figure 41 is important in another respect, as it indirectly answers the

question (see Sec. 4.3) posed by Dr. Newkirk in 1925. That is why foun-

dation flexibility will improve rotor stability in the case of internal friction,
but will produce violent whipping in the case of fluid-film bearings. The

fluid-film bearing produces a force relationship similar to Eq. (4.10).

(See App. D for derivation, and discussion of the general fluid-film equa-

tions.) In the case of a fluid-film bearing, the force component which

is responsible for the rotor instability is not necessarily small, as is the

case with the rotor internal friction, but can be of the same order as the

rotor elastic forces. Thus the ratio .4 may be of the order unity fi_r a

fluid-film bearing. In this case the introduction of foundation flexibility

will result in a reduction of the rotor threshold speed and only if external

foundation damping is added can the threshold be raised.

4.11 EXPERIMENTAL OBSERVATIONS OF KUSHUL' ON ROTOR INSTA-

BILITY CAUSED BY INTERNAL FRICTION

The number of instances in which rotor instability caused by internal

friction have been observed and reported in the literature are few. In
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FIGURE 41.--Effect of unsymmetric bearing support on the rotor whirl threshold speed

for various values of internal friction, zero foundation damping.

particular, there is very little information available on the rotor behavior

in the unstable region. Recently, a translation of the Russian work of
Kushul '(54) on self-induced oscillations of rotors became available in this

country. In this investigation, Kushul' discusses some experimental

observations of the motion of some high-speed textile spindles which
exhibited self-excited whirl motion. Examination of the construction

of the spindles as shown in Figs. 25 and 26 of Ref. 54 reveals why insta-

bility occurred. The spindles are composed of a built-up structure of a

long wooden spindle inserted over a thin steel shaft. It is easy to

visualize how such a long shrink fit could lead to stability problems.

(See Sec. 4.2.)

Some of the major conclusions that Kushul' states on the rotor stability
characteristics are:

1. The self-excited rotor motion occurs only above the first critical

speed (see Eq. 4.33).



116 DYNAMIC STABILITY OF ROTOR-BEARING SYSTEMS

2. The whirl frequency remains almost constant at all speeds and

is close to the characteristic first-order frequency of the spindle.'

In certain cases well above the threshold, the whirl frequency

can abruptly change from the first- to the second-order spindle

natural frequency (see Sec. 4.6.3).

3. The use of an elastic support by itself, without any increase in

damping force, does not reduce the self-excitation (see Fig. 36).

4. External damping improves the rotor stability.

5. The most effective means to control the instability consisted of a

spring-loaded bushing and damping sleeves. No dangerous self-

induced vibrations were observed with any spindle with this
type of bushing (see Figs. 36 and 40).

Figure 42 represents typical rotor orbits that Kushul' obtained on his

textile spindle above the stability threshold. Unfortunately Kushul'

did not have available precision electronic linear capacitance probes to

monitor rotor motion (as depicted later in Fig. 44) and so had to resort to

an optical system. He attached a fine needle to the spindle end and

obtained the following pictures by photographing the resulting motion

under a microscope. Figure 42 represents the rotor motion for a con-

8000 rpm _:_00 r?,:l 10300 rpm I_008 rpm

12800 rpm t:J;_:J tpm 15300 rpn_

|t;_._O0rpm 174(}_Jrpu= 19300 rpm

-':'1000rpm 22.00 rpm 24500 rpm

FIGURE 42.--Photographs of rotor motion with internal friction over a wide range of speed

(ref. Kushul').
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siderable range above the rotor threshold speed. This figure is of ira-

" portance as it illustrates the conclusions of Sec. 4.6.3 that the rotor

precession rate is approximately equal to the rotor critical speed and

also that the precession rate is constant over a large speed interval.

The critical speed of the spindle was determined to be about 4300 rpm.

The fact that the rotor nonsynchronous precession rate remains constant

can be easily verified by inspection of the various whirl patterns of Fig.

42. For example, at the speed range of 8000 to 8500 rpm, the rotor

orbit forms one stationary internal loop. This indicates that the whirl

ratio colic0 = 1/(1 + n) = 1/2 or cop is approximately 4200 rpm. At 12 800

rpm, a stationary orbit with two internal loops is formed, which indicates

a whirl ratio of one-third or coe = 4300 rpm. Also at 21 000 to 22 000

rpm, a stationary pattern is formed with four internal loops to indicate
a 1/5-whirl ratio. Likewise, the rotor nonsynchronous precession rate

at 22 000 rpm is still approximately 4300 rpm.

Based on the analysis of Sec. 4.6.3 and the experimental observations

of Kushul', we see that the assumption of toe = co¢'n = constant has con-

siderable justification and will be used in Chapter 6 in the development

of some of the characteristics of rotor instability due to fluid-film bearings.

The top portion of Fig. 43 (from Kushul') represents the spindle motion

at a speed slightly above four times the critical. The upper left-hand pic-

ture represents the motion for only two cycles. Since the total rotor speed

is not an exact multiple of the precession rate coe, the pattern is not

stationary. The upper right-hand figure represents a time exposure of

the motion. Notice the similarity between this figure and the analog

computer orbit of 19b which includes a nonlinear radial stiffness term.

The lower portion of Fig. 43 represents the rotor motion above the sta-

bility threshold. In the lower left-hand figure, the rotor precession rate

was equal to the first critical speed." When the rotor speed was in-

creased, the precession rate abruptly changed from the first to the second

critical speed as shown in the lower right-hand figure. Such an effect

cannot be obtained with the present model because (neglecting bearing

mass) there is only one system critical speed.
In summary, Kushul's experimental findings verify many of the theo-

retical statements and conclusions of Chapter 4 on the characteristics

of the whirl orbits and on the influence of foundation flexibility and

damping on stability.

4.12 DISCUSSION AND CONCLUSIONS

In Chapter 4 the equations of motion of the extended Jeffcott rotor

have been developed to include internal rotor friction. Chapter 4 shows

that the introduction of internal rotor friction will cause unstable, non-

synchronous rotor precession above the critical speed. The analysis
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FIGITRE 43. -F'Photopraphs of ro tor  motion with internal friction (ref. Kushul'). 

of t h e  precrssion rate shows that the nonsynchronous motion is approxi. 
mately equal to the rotor critical speed and remains constant over a 
considerable speed range. This is in accordance with the observation!: 
of Newkirk and Kushul' (see Sw. 4.1 1)  on the rotor whirl. 

One of the most important aspects of Chapter 4 is the influence of 
foundation flexibility and damping on the rotor stability. A symmetric 
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flexible foundation will reduce the rotor critical speed and also the whirl

" threshold in the absence of external damping. If external damping is

added, the stability threshold can be greatly improved. The interesting

aspect of the problem is that foundation asymmetry alone, without

foundation damping, can create a large increase in the whirl threshold

speed. This effect can be readily seen from the three-dimensional

model shown in Figs. 22-24.

It is relatively easy to visualize how foundation damping improves

stability, but it is rather difficult to see why bearing asymmetry alone

should improve stability. A mathematical reason for this is given by

Eq. (5.20) in Chapter 5 for the two-dimensional system. A heuristic

argument for this is given by the following. Section 4.6.1 states that the

system will be unstable if it possesses repeated conjugate imaginary

roots. These roots are closely related to the rotor critical speed. For

the symmetric system, the resonant frequencies in the X and Y directions

are equal. The introduction of foundation asymmetry shifts the reso-

nance in the two directions creating two critical speeds which shift the

conjugate roots, causing an improvement in stability. There is a slight

penalty for this in that larger amplitudes are encountered at the rotor

critical speed (see Sec. 4.5). Also, Sec. 4.5 shows that a component of

synchronous backward precession can only be developed in an asym-

metric system.

In general, once the whirl threshold speed has been exceeded, the

linear system predicts that the nonsynchronous component becomes un-

bounded. The analysis of Sec. 4.7 shows that only for the case of a non-

linear, nonconservative system can a finite limit cycle be obtained above

the threshold speed. A similar result is obtained for the case of fluid-

film bearings. Thus, the orbital pictures of rotor motion above the

threshold obtained by Kushul', discussed in Sec. 4.11, and Hinkle and

Gunter, discussed in Chapter 5, can be caused only nonlinear, non-

conservative systems.

In Sec. 4.9, general equations of motion are derived to include bearing

mass, and are not restricted to lightly damped systems as Eqs. (4.17) are.

The derivation of these extended equations is made possible by the devel-

opment of a general dissipation function to represent the internal rotor

friction. The important characteristic of this function is that the energy

level is a function of the rotor precession rate as well as the rotor abso-

lute velocity. In fact, if the dissipation function is a function of only the

rotor absolute motion, it can be shown that the system is always stable.

A similar conclusion can be drawn for the linearized fluid-film bearing.
Its characteristics can be derived from a potential function and a dissi-

pation function similar in nature to the rotary damping function.

Section 4.9.4, on the approximate effect of bearing mass on stability,

shows that bearing mass will lower the threshold for the symmetric case.
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One interesting aspect of bearing mass is that the mass of the bearing

and flexibility of the support may be designed to attenuate the displace-"

ment amplitude at the rotor critical speed; that is, to act as a dynamic
vibration absorber. This seems to have a deleterious effect on the rotor

stability.

The stability analysis of the general equations of motion in Sec. 4.10

reveals a number of important stability charaeteristics which are not

obtained from the analysis in Sec. 4.6.1. The general analysis shows

that, under certain conditions, the rotor can be completely stabilized by

foundation flexibility and damping. The approximate analysis indicates

that the greater the external foundation damping, the higher the thresh-

old of stability will be. The general analysis shows that there is a limit-

ing value of external damping that should be used, and that values

higher than this will result in a reduction of stability.

In conclusion we find that the work presented in Chapter 4 furnishes

an explanation of the rotor whirl motion observed by Dr. Newkirk in 1924.

In particular, we see that this unstable motion occurs only above the

critical speed and never below it. Obviously, it appears that this prob-

lem can be simply avoided by designing the rotor to operate only in the

subcritieal speed region. This is not entirely a satisfactory design pro-

cedure, since it will result in a more rigid, heavier rotor. Sueh a design

would not be acceptable in certain applications, such as spacepower

where weight is at a premium. Successful operation of" a high-speed

suberitieal rotor also requires extremely accurate rotor balancing in

order to limit the dynamic bearing loads to acceptable limits.

A second approach to insure stable rotor performance is to minimize

all sources of internal rotor friction. The designer should see that all

shrink fits, impeller spacers, etc., are properly designed so as to minimize

this effect. Robertson _sS_ discusses a number of hub designs which

were found effective in reducing internal friction. It is important to note

that even in a well-designed rotor, instability can result due to a poorly

alined gear-type flexible coupling.
Internal rotor friction is only one of many sources which can cause

rotor instability. Recently Alford _° demonstrated that aerodynamic

exciting forces developed by labyrinth seals and local variations in blade

eflqciency can cause severe rotor whirl of axial compressors and turbines.

_0j. S. Alford, "Protecting Turbomachinery From Self-Excited Rotor Whirl," Journal of

Engineering for Power, ASME, Oct. 1965, pp. 333-344.



Chapter 5

Stability of Motion for Small Oscillations

Consider the single-mass Jeffcott rotor of Sec. 2.3 as shown in Fig. 3,

or the journal bearing of Fig. D.2 in Appendix D. In either case both

may be treated as a point mass rotor. The equations of motion will be

examined for small oscillations in a Cartesian reference frame. By

assuming only small perturbations or displacements from an equilibrium

configuration, we obtain linearized equations by which stability charac-

teristics can be examined by the standard Routh procedure.
The usual procedure in the case of fluid-film bearings has been to

express the motion of the system in polar coordinates, since the film

forces express themselves conviently in this form. Since-the resulting

equations of motion are nonlinear, most investigators, such as Reddi and

Trumpler, _79_have linearized these equations by the small perturbation

approach and have then applied the Routh criterion.

There are several basic difficuhies with the latter method. First, it

is difficuh to extend the system to additional degrees of freedom in which

foundation and rotor deflection, and bearing mass are taken into con-

sideration. The resulting equations of motion become highly nonlinear

and intractable to handle. For example, the governing equations of

motion of Chapter 3 were extended to include foundation and bearing

characteristics in polar coordinates. After several months effort, the

only meaningful solution obtained was for the case of synchronous pre-

cession. As it turns out, the synchronous precessive solution, which is

presented in Chapter 6, is much better handled by a fixed Cartesian

coordinate approach in which the bearing forces are transformed to an

X-Y system.

The second difficulty with the polar coordinate approach is that it is

difficult to generalize as to what influence the various bearing terms have

on the rotor stability. The third problem is that it is extremely difficult

to simulate the rotor orbital behavior by means of an analog computer

because of the nonlinear terms. Jennings 1 in 1960 investigated the oil

1Jennings, U. D., "An Investigation of Oil Bearing Whirl by Electronic-Analog Computer
Techniques," Cornell University, Ph. D. thesis, 1960.
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film whirl problem on the analog computer. The motion of his system
had to be limited to cases in which the orbit does not encircle the origin. _

This limitation can be circumvented by transforming the rotor precession

rate _b to X,Y coordinates, but that is adding an unwarranted complication

to the problem.

The only hope in extending the rotor stability analysis beyond the

current state of art in which the rotor is considered as a point mass in a

rigid bearing lies in the ability to express the equations of motion in
Cartesian coordinates. Dr. V. Castelli _5_used the Cartesian coordinate

approach with excellent results in his analysis of the 360 ° infinite-width

gas bearings. He derived the governing isothermal Reynolds equation

in Cartesian coordinates and linearized it by assuming small perturba-

tions in the X,Y coordinates. The resulting coupled linear differential

equations were then solved to yield the threshold of stability with the aid

of a high-speed digital computer. Such an approach could easily be

extended to a more complex system.

5.1 EQUATIONS OF MOTION FOR SMALL DISPLACEMENTS

The force system exerted on a journal by hydrodynamic fluid film

forces is a complex function of the bearing eccentricity, precession rate,

aspect ratio, rotor speed, etc. In the case of an oil-lubricated finite-

width journal bearing or a gas-lubricated bearing, closed-form analytical

expressions for the bearing forces are difficult to obtain, except in cer-

tain limiting cases. It will be assumed that the hydrodynamic fluid

film forces developed by a journal bearing may be considered as func-

tions of displacement and velocity as follows:

_ = Fx(X, Y, X, Y) n_+ Fu(X, V, /_, _ n_ (5.1)

The above relationship is valid in the case of incompressible fluids,

or for compressible lubricants at high or low value of the compressibility

parameter A, in which the force Eq. (5.1) is not an explicit function of
time.

If we take a Taylor's series expansion about the equilibrium configu-

ration, we obtain

r r arxl 8x+
x-- xo =- OX _=;ro

+ higher order terms (5.2)
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Fy--Fv°=-_ X=Xo OY Iv=_o aY b=bo 0--X-Ix=_o

+ higher order terms (5.3)

If only small perturbations from the equilibrium position are con-

sidered then the higher order terms may be neglected. The force

relationships reduce to

AFi = K_._ + Cr_; i = 1, 2; j = 1, 2 (5.4)

where

1= X direction, 2 = Y direction

C OF_
ij=""7 -] . .

cOXjl xj =x_o

The quantities Ki_ and Ci_ may be loosely labeled as the bearing

"stiffness" and "damping" coefficients. Thus, for small displacements

from an equilibrium configuration, the bearing characteristics may be

approximated by eight coefficients: four stiffness and four damping

quantitiesJ n,_) Note that these bearing coefficients are not in gen-

eral constants, but are complex functions of the equilibrium position

X0, Y0, total rotor angular velocity, and bearing geometry.

The equations of motion of the single mass unbalanced rotor are

given by

M)[ + Czj( + C_vY + Kz_X + K_uY= Met,to 2 cos tot + F_ (5.5)

MY + CuyY + CuxJ_ + KuyY + KyxX = MetLto 2 sin oJt + Fu (5.6)

The terms Kx_ and Kyu are termed the principal stiffness coefficients,

and Ky_ and K_ u the cross-coupling coefficients. The significance of the

cross-coupling terms is that they couple the equations of motion. That

is, the Kzy term produces a force in the X-direction due to a displacement

in the Y-direction. It is the bearing cross-coupling coefficients which

are responsible for self-excited rotor instability. If these coefficients

can be entirely eliminated, then the governing system equations in the

X and Y direction become uncoupled and the system is stable for small

disturbances from an equilibrium position.

219-720 0-66--9
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5.2 ROTOR STABILITY ANALYSIS

The stability of the governing equations of motion of the system is

obtained by examination of the homogeneous differential equations
which are

where

._ + Do)( _+ X_X_ = 0

D
o= M; gciJ= M

Assume a solution for the |brm

Xi = Ae_t; X2 = Be '_t

results in

(5.7)

(a 2+ D,,a + 3F,,)A + (D,.,a + ffg',2)B = 0 [
(5.8)/(D.,,a +)F2I)A + (0_2+ D22ct + ffg'22)B = 0

Expanding the determinant of the coefficients results in

a 4+ (D,, + Dz,,)a 3+ ()F,, + ._.,., + D,,D,,., - D,2D2,)ot 2

+ [3g',,D.,2 + ._.,D,, - (X,2D.,, + _F2,D,2)It_

+ )F22JT'I l -- 3FI23F.,I = 0 (5.9)

The general stability of the system can be determined by the Routh-

Hurwitz as outlined in Sec. 4.61. Let Eq. (5.9) be represented by

N
E AN - I_otK = 0

K=O

The stability condition is given by

Do=A_ > 0

D_ = AIA.,- AoA3 > 0

D2= A3DI - A_JI_ > 0

expanding D2 yields

A,A.,A3 > Act,2 + A_ (5. lo)
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Thus we obtain

(D. + D22)(_11 + _22 + D.D22 -- Dm2D21) x (Xm,D22 + _F22D.

-- fffl2D21 -- _21D12) > (._1 iD22+ ff{'22Dl ! - J_'I2D21 - ff{'21D12) 2

125

and

Hence

5.3 EFFECT OF STIFFNESS CROSS-COUPLING ON STABILITY

Let

It is difficult to evaluate the influence of the cross coupling coefficients

Xij and C 0, i #j, on stability by examination of Eq. (5.11). If these

coefficients are zero, then the system is stable (provided all other co-

efficients are positive). It is of particular importance to determine the

influence of the J{0 terms on stability. To do this we will first simplify

the system by assuming the damping coefficients to be of the form

Equation (5.7) reduces to

(a) X + DX ÷,Yf,,X + Yf'I2Y=O

(b) Y+DI)+ YF2,X+YF22Y=0

Replace the simple X, Y coordinates by the general transformation

_=X+aY

Combining Eqs. (5.12) and (5.13) results in

"_-f- D _ -l- ( ff{ " ' -{- t_ 2 ' ) ( X -l ffi(12 4- a'ff{'2 2 Y ) = Ofit',, --}-o_ z2

(5.12)

_:=X-_ YF12 + a.YF,,2.

_ + D_ + (Y{, + a-Y{2,)_ = 0

'_12 -_-a_22

a = YFlt + a_.,i

(5.13)

(5.14)

(5.15)

-+- (DH -4- O22)2(ff{'22_,, -- ffg",2ffg"2,) (5.11)
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Solving for a:

'_/'22 -- '_/'11 _ _/(_ff'22 -- _g'l I) 2 "]- 4_21_12

a -_" 2_g'21
(5.16)

To determine the stability of Eq. (5.14), let _=Ae (P+is)t.

in the following equations for P and S

Case h a is real

(a) P_-S2+DP+Y,I +a_21 =0[

J(b) S(C + 2MP) = 0

This results

(5.17)

Case Ih a is complex=a,.+im

(a) p.z _ S" + DP + o$rll + ar, ftf21 : 0/

](b) S(D + 2P) + a_oYf.,l= 0

Consider the stability of motion for Case I when a is real.

the precession rate S is nonzero

(5.18)

Assuming

C D

2M 2

when both damping C and mass M are real quantities. Thus the real

root is negative which indicates that the motion is damped out and

hence is stable. The roots of S corresponding to the above system are

given by

2 ,{3,.2:-_-_ K,t + K.z2 +-- _/(K.z2--K11)a+4K2,K,2 +-f

The roots S), 2 represent the natural resonance frequency of the sys-

tem. These values can be best visualized by a Mohr circle type of

construction. (See sketch on page 127.)

The roots $1 and S,, refer to the first and second critical speeds of the

system. Thus if a is real, the motion of the system is stable and may

possess two resonance frequencies.

The stiffness coefficients K11 and K.,2 are assumed to be always posi-

tive. In order to assure that a is a real quantity, it is necessary to have
either

1. Kr, and K2_ of the same sign

2. K_2 and K21 identically zero (no cross-coupling terms)
3. If K_., is of opposite sign to K,,, then it is necessary that

[K_2-K,,[ > 2X/IK,,,K,.,I
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The above represent the necessary conditions to obtain system

stability. Examination of Case II reveals an additional requirement

is necessary to obtain instability. Eliminating S from Eq. (5.18), we

obtain the following equation in terms of P only

4P 4 + 80P 3 + [50 2 + 4(ff{'t i + ar,_f21)]P 2

-4- [0 3 + 4D (_n + ar,_21)]P -4- (ff{21ar -4- ff_ll)O 2 -- (aiff{'21) 2 = 0 (5.19)

Investigation of Eq. (5.19) reveals the additional condition that K2_ < 0

in an unstable system. The previous calculations have shown that the

bearing cross-coupling coefficients must be of opposite sign in order to

obtain a self-excited oscillation. The general stability criterion of

Eq. (5.11) may be somewhat simplified by the assumption that

YF21= - YF,2 and D21 = - D12

Expanding and collecting terms results in

/ D_2 '_
(Yt",_ -- Y{22) _+ (DH + D22)(D22Y{,, + D,,JT'22) _ 1 + _)

2D_2(D,, + D22) )F,2 > _,2 [2D,2(D22 -- D,,)(_T',, -- Yf22)
-I DglD22

-4- 4012ff{'12 -4- (D,1-4-D22)2j_/'12] (5.20)
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The stability criterion expressed in the above form shows very clearly "

that if 3_r,2 is zero, the system is completely stable since the right-hand

side vanishes. Equation (5.20) also demonstrates the important con-

clusion of Chapter IV that bearing asymmetry (K,, # K22) will increase

the threshold of stability.

5.4 COMPARISON OF APPROXIMATE ROTOR EQUATIONS OF MOTION

WITH INTERNAL FRICTION TO GENERALIZED EQUATIONS

Reexamination of the approximate equations of rotor motion with

internal friction damping, Eq. (4.17), shows that they are of identical

form to Eqs. (5.5) and (5.6).

The generalized coefficients in this case are given by

r,, K2
D,, = D22 = _- \_/ _-- \_]

D12 -= D2, = 0

_'rl I =- to2c.r

c -- 2
_Y_r22 -- OJcy

, ,2-- 2;---M-_(Kx+K2)(Kv+K2)]

In the above case, we see that the cross-coupling coefficients ff,_',2

and _2, are of opposite sign and also that )/r2, is negative. If the in-

ternal friction damping coefficient C2 vanishes, then _,2 and ._.z, are

zero and the system is stable.

5.5 INFLUENCE OF HYDRODYNAMIC BEARING CHARACTERISTICS ON

STABILITY

The forces developed by a hydrodynamic fluid film bearing can be

represented by the general relationship (see App. D)

F =- [fr(e){(to -- 2,_)1+ eD,.(e)]n_

+ [f6(e) (to - 2_) - eD_(e) - toDAe)ln, (5.21)

The force components in the X and Y directions, respectively, are given

by

F_ = F" n_; F_ = F- ny (5.22)

where the transformation between the fixed unit vectors nx. v and ne,

is given by (see Fig. D.2)
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(cos q)sin_) I'-)l i-)I_x_ (ne I.-) _

\--sin _b cos (pc _av/-'_3_,/
(5.23)

Thus the component forces are given by

Fx =-- [fri(to -- 2_,)1+eDd cos 4)+ [eD_ + toDs-A(to- 2_1 sin (b

(5.24)

Fy = - Lfri(to -2q))l + eD_] sin (b - [eD, + toDi-f_(to - 2q))] cos (b

(5.25)

For small displacements

approximated by

Fx=-r af" I(to--2_>)l+e_'1 [ @Lae ae J e cos ¢b+ e + to aDSae

-- OeOf'_(to -- 2 _)] e sin _b

F. =- [-°f" I(to- 2d>)l+ e aD;I -- [e -_-e_+toa'SLOe ae J e sin 4) ae

-- aft'(to--2(_)]Oe e cos _b

from the origin, the force components are

(5.26)

(5.27)

The eccentricity vector e is given by

._> ....> .._> _.>
e =ene =+Xnx + Yny (5.28)

....) _._
Taking the dot product of Eq. (5.28) with respect to n_ and ny yields

X /

e COS (p
(5.23)

Y = e sin 6
(5.23) (5.29)

Differentiating Eq. (5.29) gives

)( = e cos 6- q)e sin 41

_'= e sin 6 + _be cos @
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When the rotor is near the threshold of stability, it is operating in the 

post-critical-speed region. 'Hence the rotor phase angle p > 90" and 
the rotor orbit is approkimately equal to the rotor unbalance displace- 
ment e,. For example, consider Fig. 44 which represents the motion 
of a high-speed gas bearing rotor above and below the threshold of stability. 
Below the threshold of stability, the rotor motion is forward synchronous 
precession in which e = e , .  Above the rotor threshold, Fig. 8 shows 
that the rotor develops a large nonsynchronous component. In this 
region the squeeze film terms ( e )  have considerable influence. 

Near the threshold, the velocity components may be approximated by 

' 

(5.30) Y = $e cos 4 = &X 

:.Fr (5.27, = 29, 30) -{d. I (l-?) 1+2C,$+w(Cd-C)Y I 
(5.31) 

F%.28-5.30, = - {WC. I (1 -%) I +2cdY-w(cd-c,)x] 

where 
(5.32) 
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r --ODf I top = rotor precession rate• L'f--_e e=eo

The functions toKr and toK_ may be termed the bearing radial and

tangential stiffness coefficients respectively. The function toDf repre-

sents the force component developed normal to the bearing line of

centers due to friction effects (see App. D.5 for derivation). This com-

ponent is usually neglected in most bearing analyses as it is normally

small in comparison to the pressure forces. When the rotor precession

rate approaches half the total rotor angular velocity, the pressure forces

vanish. In this case the friction force can be of the same order of mag-

nitude or larger than the hydrodynamic forces, since Df becomes infinite

as the bearing eccentricity ratio approaches 1. By applying D'Alem-

bert's principle, we obtain the following equations of motion

I(1 cos°t2Cd,_ +

(5.33)
/

MY + 2CaY+ toC, (1 - _) I Y- to(Ca- C:)X = Meuto 2sin tot

(5.34)

The absolute value signs have been carried through in the analysis

because the function toC, never reverses direction, regardless of the

rotor precession rate. As previously mentioned when the rotor pre-

cession rate approaches half speed, the hydrodynamic pressure field

collapses and the bearing is unable to support a load. Experimental

measurements of half-frequency whirl (73) indicate that the whirl ratio,

top/to, is always equal to or less than one-half. At the inception of in-

stability, the precession rate to is synchronous, and the term toC, l(1

-2to,,/to)l reduces to toCs.
Comparison of the coefficients of Eqs. (5.33) and (5.34) to the gener-

alized coefficients of Eq. 5.7 yields

- YF toC,
_,1 = Y¢22 = , =

to(Ca-- C:)
_r12 =--_21 M

D,, = D22 ---- 2"_6 =2Cd

to M

D,2 = D2, = 0

The general stability criterion of Eq. (5.20) reduces to

2D(2DYFr) >_ [4D2yg_,.,]
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or

D V'-_ > _12 (5.35)

for stability.

The problem of oil film instability was first reported by Newkirk and

Taylor Cs_)in 1925. They found that the whip motion, as they termed it,

started at a speed of twice the critical and persisted to higher speeds.

The rotor precession rate was observed to be approximately equal to

the rotor critical speed and remained constant over a large speed range.

Poritsky, ¢7s) in his treatment of oil film instability, shows that the rotor

threshold speed is given by the relationship

cos = 2cocR (5.36)

The Poritsky relationship can be readily demonstrated by Eq. (5.35).

Neglecting the bearing friction force coefficient Cs, Eq. (5.35) reduces to

2 /-coC_

Chapter 6 shows that for the single-mass rotor in a fixed fluid film

bearing, the rotor critical speed is a function of only the bearing radial

stiffness coefficient and is given by

The analysis of the rotor precession rate at the threshold of stability was

performed similar to that of Sec. 4.6.3. The precession rate ¢0p was
found to be approximately equal to h/_=cocR. Notice that when the

bearing friction force is excluded from the analysis, the rotor threshold

speed is a function of only the bearing radial stiffness. The cross-

coupling term caused by the bearing attitude angle does not enter into

the stability criterion. It is clearly obvious that if the cross-coupling

term is entirely absent, the rotor must be stable. This is easily seen by

letting Cd _ 0 in Eq. (5.35).

Cd --_ 0

2Cd _ > co(Cd -- Cf)
M M

0 > -- C_ (5.37)
M
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The above relationship indicates that the rotor is stable for all speeds

•when the bear!ng attitude angle goes to zero. Another important rela-
tionship that the general stability criterion of Eq. (5.20) reveals is that if

the principal stiffness terms ffFil and ff{22 are zero, the system will be

inherently unstable. For the case of a symmetric fluid film bearing, the

principal stiffness terms transform into the radial stiffness coefficients.

5.6 DISCUSSION OF DR. REDDI'S RESULTS ON OIL FILM STABILITY

We can easily deduce Reddi's results from the above analysis that the

ideal 360 ° incompressible fluid film bearing is always unstable. The

hydrodynamic fluid film forces for the ideal 360 ° bearing with no film

rupture can be expressed as

where

Fr=-Cb_

F, = Cbto 1 -- 2 (2 + _2)_/_ _ e2

Cb = 127rgLR (R) 2

Examination of the bearing radial force term Fr reveals that there is

only a squeeze film term present. In this case the bearing has no radial

stiffness and hence is unstable for all speeds. In practice, the ideal

360 ° bearing conditions cannot be maintained because the incompres-

sible lubricant cannot support a negative pressure. The film will

thus rupture and cavitate, causing a reduction in the bearing steady-

state attitude angle to a value of _b< 7r/2. Reddi represents the cavi-

tated 360 ° bearing as a 180 ° partial film bearing which introduces a

radial film stiffness term into the system. By taking the 180 ° bearing

characteristics employed by Reddi, differentiating them with respect

to the eccentricity _, and applying the stability criterion of Eq. (5.34),

one is able to derive the stability chart, Fig. 10 of Ref. 79.

5.7 ANALOG COMPUTER SIMULATION OF ROTOR WHIRL MOTION

The linearized fluid film bearing equations of motion, Eqs. (5.33) and

(5.34), were programed on the analog computer to illustrate the whirl

motion encountered with fluid film bearings. This whirl motion has

often been referred to in the literature as "half frequency whirl" because

the rotor precession rate is approximately one-half of the rotor speed to.

Figure 45 represents the rotor motion at the threshold of stability.

Figure 45A illustrates the rotor motion for one cycle. The formation

of the single internal loop indicates that the nonsynchronous component
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is approximately half of the total rotor speed, Fig. 45B represents the

rotor motion for a number of cycles. Since the system is linear, the

nonsynchronous component becomes unbounded above the threshold.

The whirl ratio in this system is slightly less than one-half, causing the
internal node to revolve in a counterclockwise manner. (Note the

similarity between Fig. 45B and Fig. 19A.)

When the rotor threshold of stability is reached for a fluid film bearing,

the development of a small nonsynchronous component causes the rotor

orbit to form a double trace as shown in Fig. 46. Figure 46 represents

the vectorial addition of varying combinations of synchronous and half-

frequency precession. When the half-frequency component is very

small (B <{ 1), the synchronous orbit forms a double trace. When this

type of rotor motion is observed on the oscilloscope, it is an indication

that the rotor stability threshold has been reached (Fig. 47).

As the half-frequency component increases, the size of the internal

loop diminishes until it degenerates into a cusp when A/B < 0.5. Thus,

by comparison of Fig. 46 to an actual rotor orbit such as shown in Fig. 47,

an estimate of the ratio of the synchronous to the nonsynchronous com-

ponent of rotor motion can be quickly made.

A nonlinear radial bearing stiffness term was added to Eqs. (5.33),

(5.34) to produce a set of equations similar to Eq. (4.46) in Chapter 4.

Y

(A)

(8)

FIGURE 45.-Rotor half-frequency whirl motion of a fluid film bearing at the threshold

of stability. (A) Rotor motion for one orbit; co=ca, synchronous and nonsynchronous

preeesslon. (B) Rotor motion for 40 cycles; nonsynchronous compunent is unbounded

in linear system.
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@@@CC
A= I A=0.9 A=O.8 A=O.7 A=0.6
B ',0 B=O.I B=O.Z B=O.3 B=O.4

A= 0.5 A= 0.4 A= 0.3 A= 0.2 A= O. I

B-O.5 B'=0.6 B-O.7 B'O.8 B=0.9

FIGURE 46.--Analog computer traces of various combinations of synchronous and half-

frequency whirl. .d= Magnitude of synchronous whirl component, B== magnitude of

half-frequency whirl component.

FIGURE 47. -- Oscilloscope picture of half-frequency whirl motion in a tilting pad gas bearing

rotor (ref. Gunter, Franklin Institute).
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The analog computer program B-2 was run over a wide range of speeds

for various values of the nonlinear component or, where a = 0 represents.

the linear system. Figure 48 represents a comparison between the

orbital motion obtained with the linear system (A) and when a small

nonlinear component is added as shown in Fig. 45B. In this case,

a=0.05 represents only approximately a 5-percent increase in the

bearing radial stiffness in comparison to the linear system at the thresh-

old of stability. It was observed that a limit cycle could be obtained on

the analog computer even when the potentiometer setting for a was zero.

To simulate the true linear system, the switch F2 (see analog computer

diagram II in App. B) was installed to eliminate the nonlinear circuit.

To measure the deviation between the nonlinear system with a set equal

to zero and the linear circuit, a digital voltmeter was used to monitor

voltages in the two circuits. The digital voltmeter readings indicate

tilat there exists no more than a fraction of a percent deviation between

the two circuits.

The implication of this is quite important. Since in all fluid-film bear-

ings the film forces are nonlinear, the rotor motion does not become un-

bounded above the stability threshold but forms a limit cycle, as shown in

Figs. 44 and 47. Previous stability investigations, such as given by

Refs. 4, 5, 7, and 8, have been primarily concerned with the determination

of the stability threshold by examination of the linearized equations of

motion. It is well known in reality that the rotor motion does not

become unbounded above the threshold but forms a finite limit cycle.

Thus the limiting safe operating speed for an actual rotor system may be

considerably above the threshold value.

This is illustrated by Fig. 49 which represents the rotor steady-state

motion over a widespread range of various values of a. The analog

computer orbits in this case were obtained by allowing the rotor transient

motion to die out. Notice that for the case of the linear system (a= 0),

the rotor motion becomes unstable at approximately twice the rotor

critical speed, as was first predicted by Poritsky. _5) Once the threshold

is exceeded, the motion is unbounded. As the nonlinear coefficient a

is increased, the amplitude and frequency of the critical speed increases.
Above the threshold the motion is bounded and forms orbits similar to

that represented by Fig. 48(B). Examination of the curves for a= 0.05

and 0.10 indicate that the rotor limit cycles increase in approximately a

linear relationship with speed for this particular system.

Figure 50 represents the rotor transient motion at the stability thresh-

old for various values of the parameter a. In Fig. 50(A) we see that the

nonsynchronous component grows rapidly and becomes unbounded in

the case of the linear system. In Fig. 50(B) for a=0.01, a large but

finite rotor orbit develops. As the value of a increases, the size of the

limit cycle diminishes until, for values of a exceeding 0.10, the non-
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(A)

FICURE 48.-Comparison of rotor half-frequency whirl motion at the threshold of stability

for linear and nonlinear system, fluid film bearing. (A) Linear system - unstable motion.

Nonsynchronous precession predominates for N > 20 cycles. (B) Nonlinear system-

finite limit cycle. Nonsynchronous component remains bounded.
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synchronous component is eventually suppressed, leaving only the
.synchronous precessive motion caused by rotor unbalance. For

example, Fig. 50(E) shows that for ol= 0.25, the rotor motion becomes

stable synchronous precession after approximately 50 cycles. The

occurrence of half-frequency whirl in a fluid film bearing is not restricted

to the conventional 360 ° journal bearing, but can occur in complicated

bearing arrangements such as the tilting pad configuration shown in

Fig. 51. Considerable interest and investigation has been directed

toward this bearing arrangement because of its superior stability char-

acteristics. (Refer to Refs. 26, 27, and 28 for further details.)

ROTOR SPEED - 2,000 RAD[SEC

INCREASING TIME

l
IA) SHAFT MOTION AT THRESHOLD OF STABILITY- (3aO LINEAR SYSTEM

UNSTABLE ORBIT - NONSYNCHRONOUS PRECESSION

(B) SHAFT MOTION- NONLINEAR SYSTEM- G-0.01

FINITE ORBIT-NONSYNCHRONOUS PRECESSION PREOOMINATES

(C) SHAFT MOTION-NONLINEAR SYSTEM- (:l" 0.05

SYNCHRONOUS AND NONSYNCHRONOUS PRECESSION

(O) SHAFT MOTION- NONLINEAR SYSTEM - re-O.lO
SYNCHRONOUS PRECESSION PREDOMINATES

i SYNCHRONOUSPRECESSION _ 8"eF

(E) SHAFT MOTION-NONLINEAR SYSTEM - GmO.25

SYNCHRONOUS _ 3.eF
PRECESSION

(F) SHAFT MOTION- NONLINEAR SYSTEM- (3-0.375

SYNCHRONOUS , . eF
PRECESSION 8

(G) SHAFT MOTION WITH VERY LARGE NONLINEARITY CE-0.5

FIGURE 50.--Effect of nonlinearity on rotor transient motion at the threshold of stability.

219-720 0-66--10
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FIGURE 5l.-Pivoted-pad journal configuration with three shoes.

Figure 47 represents the actual motion of a tihing-pad gas bearing

rotor at the threshold of stability. This picture is of interest because
it not only illustrates the half-frequency wh_rl phenomena, but because

it also represents the first published picture of nonsynchronous pre-

cession in a tilting pad bearing. IzS) This is of particular interest because

in 1946, Hagg, _z9) in his article on bearing stability, stated that the

tilting pad bearing is inherently stable and was not capable of supporting

self-excited whirl instability. The fallacy in Hagg's argument lies

in his assumption that the forces acting on the shoes are single-valued
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" functions of eccentricity. 1 The ability of the pads to pivot causes the

bearing to operate with an almost-zero-attitude angle. If the bearing

attitude angle remains identically zero, the bearing cross-coupling terms

will vanish and hence the bearing will be stable. The stability criterion

of Eq. (5.20) shows that if the cross-coupling terms Kl2 is zero, the system
is inherently stable. 2

5.8 INFLUENCE OF LUBRICANT COMPRESSIBILITY OF ROTOR STABIUTY

The compressibility of the lubricant in a fluid film bearing 3 can have a

considerable influence on the bearing stability characteristics. For

example, Fig. 52 represents the steady-state pressure profile for con-

ditions of incompressible lubrication, moderate compressibility, and

the limiting pressure profile when the compressibility parameter A

approaches infinity. (See Eq. (2.11).)

The bearing pressure profile for the case of an incompressible lubri-

cant or for a compressible fluid at very low values of A is given by the

solid line as shown in Fig. 52. Note that the pressure profile in this

case is asymmetric with respect to the bearing line of centers. Inte-

gration of this pressure distribution around the circumference of the

bearing indicates that the steady-state bearing attitude angle is 90 °.

This implies that an applied force to the journal will result in a deflec-

tion normal to the applied load. Since the system has no radial stiff-

ness under these circumstances, the rotor is unstable as shown by Eq.
(5.35).

Harrison, ¢31_ who analyzed the infinite width 360 ° incompressible

fluid film bearing in 1913, and later Robertson ¢s2_in 1933 both concluded

that the 360 ° bearing is unstable at all speeds. As previously mentioned,

Reddi shows that the oil film bearing has finite ranges of stability by

assuming a ruptured film. In actuality, the oil film bearing is unable to

sustain a large negative pressure so it cavitate_, creating a partial arc

condition. Reddi simulates this condition by ignoring the negative

part of the pressure profile, which then allows a finite stable range of
operation to occur.

The stability analysis of a pivoted pad bearing arrangement is complicated by the fact

that individual shoe motion as well as shaft motion must be taken into account. For

additional details, see E. J. Gunter and V. Castelli, "Stability Investigation of Tihing-Pad

Bearings I-Theoretical Foundations," Interim Report I-B2131-1, Franklin Institute

Research Laboratories, Feb. 1965, Contract DA-31-124-ARO(D)147.

2 A detailed discussion and sample calculations of the design and stability characteris-

tics of tilting pad bearings is given in the report by E. J. Gunter, Jr., J. G. Hinkle, and D. D.

Fuller, "Manual for the Design of Gas-Lubricated, Tilting-Pad, Journal and Thrust Bearings

With Special Reference to High Speed Rotors," Report I-A2392-3-1, Franklin Institute

Research Laboratories, Contract AT(30-1)-2512, Task 3.

3 The derivation of the general Reynolds equation including lubricant compressibility
is given in App. D.
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FIGURE 52.-Effect of lubricant compressibility on the pressure distribution in a 360 °
journal bearing.

In the case of a compressible media, the lubricant is able to sustain a

subambient pressure as shown in Fig. 52. Thus lubricant compressi-

bility has the net effect of reducing the bearing steady-state load capacity

and also the bearing attitude angle. The stability analysis as performed

by Cheng (6) and Castelli (5) is considerably more dit_culI than tile incom-

pressible situation due to the nonlinearity of the governing Reynolds

equation and the introduction of the time-dependent squeeze film term.

The fact that the gas bearing has an attitude angle less titan 90 ° accounts

in part for its ability to develop a finite threshold speed.
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The stability characteristics of the 360 ° infinite-width gas bearing as

• determined by Cheng and Castelli are shown in Fig. 53. Although each
used considerably different techniques, the results show considerable

agreement. Note that in both analyses, as the compressibility parameter

A approaches zero, the bearing is unstable for all eccentricity ratios as

predicted by incompressible theory. As the compressibility parameter

increases, the bearing attitude angle approaches zero and the bearing

can develop only a finite load capacity. Notice that Fig. 52 shows that

the influence of lubricant compressibility changes the bearing pressure
profile from asymmetric to symmetric at high values of A. 4

Under these circumstances the gas film behaves as a nonlinear un-

damped spring system, s Although Fig. 53 shows a threshold of stability

at high A, in reality we find that it does not exist• Since the bearing

attitude angle goes to zero as A --_ _, the mechanism which is responsible
for self-excited whirling vanishes.
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FIGURE 53.-Threshold of stability for the 360 ° infinite-width gas bearing.

4For additional discussion of the influence of lubricant compressibility on the bearing

pressure profile, refer to the paper by G. Ford, D. Harris, and D. Pantail, "Principles and

Applications of Hydrodynamic-Type Gas Bearings," lnstit, of Mech. Eng., Oct. 1956.

sSee W. A. (;ross, Gas Film Lubrication, J. Wiley, 1962, p. 128, for the asymptotic solu-

tion of the gas bearing at high compressibility numbers.
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Examination of the real positive root which governs stability reveals

that it is zero at the threshold and remains zero as the rotor speed exceeds"

the threshold. 6 Routh referred to this special condition as neutral or

critical stability. If we should add a small amount of external damping

or bearing friction force to the system, we would find that the gas bearing

is completely stable at high values of A.

5.9 DISCUSSION AND CONCLUSIONS

In Chapter 5 we have evaluated the stability characteristics of the

general linearized equations of motion for a system of two degrees of

freedom by considering the first-order terms of the Taylor's expansion

of the forces. The general stability criterion developed (Eq. (5.20)) is

useful because it provides considerable insight into the mechanism of

rotor whirl instability caused by both internal friction and fluid film bear-

ings. Equation (5.20) shows why bearing asymmetry will increase

stability and also indicates that the system will be stable if the general-

ized cross-coupling coefficient k_2 is zero.

The linearized equations of motion for a fluid film bearing were pro-

grained on the analog computer. Comparison of these orbits to the

motion obtained with internal friction damping clearly shows the simi-

larity between the two mechanisms.

SThis is similar to the situation encountered in (]h. 4 in the limiting ease when the internal

damping coefficient goes to zero. The Routh criterion still predicts a stability threshold,

but examination of tile real positive root P reveals that it is zero. See Eq. 14.41).



Chapter 6

Analysis of the Extended Jeffcott
Model- Synchronous Precession

In the analysis of the single-mass rotor (Jeffcott model), the rotor end

conditions were assumed as rigid or simply supported.

The assumption of simple-support boundary conditions as a basis

for rotor critical speeds is obviously inadequate, since the bearings and
foundation flexibility will considerably alter the behavior. Numerous

investigators such as Smith, ¢93_Linn and Prohl, _57_Koenig, ¢1o2)and Lund

and Sternlicht _ss) have considered the effects of the bearings on the

rotor critical speeds and the bearing attenuation. In each of these

approaches, the bearings are treated as linear springs and dashpots.
The problem of determining the system critical speeds is reduced to the

problem of finding the natural lateral frequencies of an equivalent beam

on damped elastic supports.

A fluid film bearing cannot be adequately represented by a single

spring and damping coefficient. For small perturbations from an

equilibrium position, the bearing characteristics may be approximated

by eight film coefficients, four damping factors, and four film stiffness

terms. For a symmetric bearing, this further reduces to four: two damp-

ing and two spring coefficients.

As an example, Reddi and Trumpler ¢79)show that the bearing forces

generated by a cavitated 360 ° oil bearing are of the form

Ft = 31xE_LD (D) 2 [(2+_2)_1__2)] [¢r(to--2_) (l--E2) '/2

[. 2¢z(°J-- 2_)
Fr =-- 3g_LD (D)2 L(1 _ _2)(2 + _2)

161]+ (1 -- E2)a/2 _ at(2 + _2i + If/cos _b (6.2)

145
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This can be expressed in the general form

(6.3)

where

Khr = Complex bearing stiffness coefficient

= to [C., + iCa]

Dbr = Complex damping coefficient

= to [Ds + iDa]

The most common practice is to neglect the normal or cross-coupling

coefficient Ca in order to reduce the bearing to a one-dimensional rep-

resentation. Lund and Sternlicht have attempted to improve upon

this assumption by lumping the cross-coupling coefficients with the

principal spring rates, but the manner in which this is done" is nebulous

and the'results are not general.
The normal film coefficient has a considerable influence not only on

the system critical speeds but also on the forces transmitted through

the bearings. As an illustration, by expressing the bearing character-

istics in complex vector form, it is possible to write the equations of

motion of the single-mass symmetric rotor including the bearings and

foundation flexibility. This represents a system of seven degrees of

freedom as compared to the original three.

If the bearing housing is considered as flexible, then the forces exerted

on it by the journal will cause it to deflect. The total displacement.of

the journal center O_ will be given by. the sum of the bearing housing

(or foundation) flexibility, plus the relative displacement of the journal

in the bearing

where

._ = differential operator = d/dt

Ds; Da = damping coefficients

Cs; Ca = film stiffness coefficients

Note that depending upon whether the rotor motion is synchronous

or nonsynchronous, precession will determine the sign of the tangential

bearing force Ft. The radial bearing force is invariant in direction

regardless of precession rate. If the motion is assumed to be synchro-

nous precession, then the vector fluid force acting on the journal is

given by __ .,
Fbr = [Kbr+ Dbr_] 8j (6.4)
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8c = 8j + 6b (6.5)

--). ...)

If a linear relationship between Fb, and 8b is postulated then:

_b, = -- Kb_ (6.6)

Combining Eqs. (6.4), (6.5), and (6.6) and neglecting bearing damping

- Kbto[Cs + iCd]
"= Td-j ] 8c

=-- K_,._ =-- [K* + iK_] 8_ (6.7)
where

K* -- K_Ks + (K_ + K_)Kb
(Kb + Ks) 2+ K_

KDr_a

K_ = (lib + Ks) 2+ K_

If the elastic forces acting on the rotor center are similar in form to

Eq. (6.7), then

-.) .-.)

F8 =- a 8, (6.8)

Let

8 = total rotor deflection = 8, + 8_+ 8b (6.9)

Combining Eqs. (6.7-6.9)

where

....) .._)

F8 =-- Ks 8 (6.10)

Ks = total system complex stiffness coefficient

Ks = aKb, + iKsi
ot + Kbr = Ksr (6.11)

and

Ks, = a [(_°C*)2 + (t°C'_)2 + atoC*]
(a + oJC*)* + (coC_)*

K_i - a2°"C_
(o_+ _oCs*)*+ (oJC_)* (6.12)
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If rotor damping and unbalance is considered, then the vectorial"

equation of motion of the rotor is given by

M8 + Ml.tfto _ + Ks_=-M_e (6.13)

(Note that total time derivatives are used in Eq. (6.13).)

If the disk is revolving with constant angular velocity

e =e_[e i_t]

and

e = -- e,toZ[e i°'t] (6.14)

where et,= rotor unbalance eccentricity. Equation (6.7) becomes

K8
:_+ gf_o _ + --M -8= (et, to2)d ''t (6.15)

If the motion of the system is assumed to be forward synchronous

precession (rotor motion may be nonsynchronous precessive which is
associated with self-excited whirling), then a particular steady-state

solution of the following form may be assumed.

8 = 8oe_'°t (6.16)

Solving for 80, the complex rotor amplitude

8o= __ K,+
1 Mto2 igf

(6.17)

80 = eg

(6.11) ] Ksr . / K,i \
A--_-/_2 + i _gs+ _--_2)

(6.18)

The complex rotor amplitude

80 = A -- iB (6.19)

where

A_

1-- K.r "_2 / K.i \
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B= ett(Id'f-l-n_2)
(6.20)

The vectorial rotor deflection 8 may be expressed in terms of real

quantities by the introduction of the rotor phase angle/3.

8 = Re e i(_°t-_J (6.21)

Re = total rotor deflection

Re = A2N//-__-_: _/(1 Ksr\2[Ksi \2

r K,,q

fl=tan-' | Ksr _ 1| (6.23)
L Mto2 _l

When to=tocs, the system critical speed, the displacem6nt vector is

lagging the eccentricity vector e by 90 °. This is given by the conditions
that

A=0

and

/3 = 90 ° (6.24)

This is only possible if

1 -- Ks___L= 0 (6.25)
Mto 2

Hence the system critical speed is given by

/o_[ g*2 + K_2 + otg .1

tocs= __-= _/_ (6.26)

Let

ot
R=--

K*
and

tan _b=K'_
K.

toes_ ./. _1_+R+_tan_
toC'--R-- _(1 -4- R) 2 -4- tan 2 _b = N (6.27)
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Equation (6.27) represents the ratio of the system critical speed to "

the critical speed of the rotor on simple or fixed supports. The ratio

N is always less than 1.

Figure 54 represents a plot of Eq. (6.27) for various values of N. From

the graph it is seen that the bearing attitude angle has a pronounced

effect on the system critical speed, particularly at high values of (/).

Previous rotor dynamic programs have neglected the normal bearing

coefficients K* in the calculation of critical speeds. This approxima-

tion is justified only if the effective bearing attitude angle is low or less
than 20 ° .

For the case of a rigid rotor (a _ 0o), Eq. (6.26) reduces to

where

tOcs = _ (6.28)

K.=Ks +-_b (K_ + K_)

1 Ks 2 Kd 2

For the case of a rigid foundation (Kb_ Q¢), the rotor resonance fre-

quency reduces to a function of only the radial oil film stiffness coefficient

Ks.

The rotor displacement at the critical speed is given by

8 =B= Ksr

-_ ,_=,_s et, Ksi +/zj'Ksr (6.29)

If the external damping coefficient/xy= 0, then the rotor amplitude at

the critical speed is unbounded for the case of the simple support rotor.

When oil film bearings are introduced, the deflection is limited due to

the influence of the out-of-phase bearing coefficient. Eq. (6.29) reduces
to

6[ - l+R+tan 2 d_e---__=_c, R tan 4) (6.30)

Thus Eq. (6.30) shows that the rotor amplification at the critical speed

is a function of the bearing attitude angle. In Chapter 5 it was demon-

strated that the bearing attitude angle is primarily responsible fi)r rotor

instability. That is, the ideal 360 ° bearing with a 90 ° attitude angle is

always unstable, and the tilting pad bearing or the 360 ° compressible

fluid film bearing at high A number with a zero attitude angle is stable.
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Therefore if the bearing attitude angle is decreased to improve the °

rotor stability characteristics, the rotor will develop higher amplitudes

when passing through the critical speed.
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Chapter 7

Discussion of the Assumptions, Results,
and General Conclusions

7.1

The

1.

DISCUSSION OF ASSUMPTIONS

major assumptions that are made in the analysis are--

The rotor mass is concentrated in a single plane which is equidis-

tant from the points of shaft support.

2. No gyroscopic forces act on the disk.

3. The mass of the shaft is negligible in comparison to the mass of
the disk.

4. The total rotor angular speed is constant.

5. The shaft is axially symmetric.

The first three assumptions define the single-mass Jeffcott model. In

this model no gyroscopic terms are taken into consideration. It is well

known that the gyroscopic terms can have a considerable influence on

the rotor critical speeds and the rotor precession rate. Stodola _1°°_

considered in detail the influence of gyroscopic forces on the critical

speeds. Less well understood is its influence on rotor nonsynchronous

precession. Green, t2z) in his article on the gyroscopic effects on critical

speeds, assumes a conservative system and arrives at both forward and

backward nonsynchronous precessive solutions. It appears that his

backward precessive solutions will vanish when damping is added to the

system, as was the case with the work of Kane. _45_ The author has ob-

served a case of backward nonsynchronous precession in a high-speed

gas bearing rotor as shown in Fig. 55. This occurred when a thrust

bearing was overloaded creating a moment on the shaft. It is believed
that the interaction between the external friction moment and rotor

gyroscopic moments created the nonsynchronous backward precessive

motion shown in Fig. 55.1

Analog computer simulation of the rotor motion indicates that the five-star pattern is a
combination of forward synchronous and 1_ times synchronous backward precession.

153
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FIGURE 55.-Nonsynchronous backward precession in a gas bearing rotor (ref. Gunter,

Franklin Institute). Journal Orbit, 9-5--63. N = 3000 rpm, Pivot No. 4, Pr = 50 psig,

PB=70 psig, L/B= 1.0, C'/C=0.731, Load cell = 31/2 in. H20. (A) Rotor orbit. (B)

Sweep traces.

In the analysis, asymmetric foundation support is considered, but the

shaft is assumed to be axially symmetric. D.M. Smith _93)analyzed an

unsymmetric shaft in 1933 and concluded that shaft asymmetry will

result in large vibrations between the dual critical speed range, and that

the addition of sufficient external damping to the system will suppress

the motion. Smith's analysis was extended in 1943, by Foote, Poritsky,

and Slade. z Recently Yamamoto 3 also demonstrated that shaft asym-

metry can lead to large amplitude vibrations.
Thus we see that while fimndation asymmetry can have a beneficial

influence with respect to stability, shaft asymmetry should always be
avoided.

7.2 DISCUSSION OF RESULTS AND CONCLUSIONS

The major results and conclusions of this investigation are summarized
as follows:

1. Rotor nonsynchronous precession cannot be adequately investi-

gated from the standpoint of a conservative system.

2. Nonsynchronous rotor precession is a self-excited phenomenon

which occurs only in certain dissipative systems (neglecting

gyroscopic fi_rces) in which the dissipation function is dependent

upon the rotor precession rate.

3. Rotor instability never occurs below the first critical speed, but

only in the post- or super-critical-speed region.

z Fo_te, W. R.. Poritsky, H., and J. J. Slade, Jr., "'Critical Speeds ,f a Rl_lor Wilh Uncqual
Shaft Flexibilities," ASME Trans. J. Appl. Mech., A-77, June 1943.

aYamamoto, T., and O. Hiroshi. "()n IIw I]nslahh, Vihralions of a Shaft (:arrying an

Unsymmetric Rotor," ASME Trans. J. Appl. Mech., Paper No. 64, APM 32.
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4. The rotor precession rate is closely related to the system natural

frequency (single-mass rotor) and remains approximately con-
stant over a wide range of speeds.

5. Two common causes of rotor instability are rotor internal fric-

tion caused by shrink fits, couplings, and fluid film bearings.

6. The mechanism which causes instability has a beneficial influ-

ence in the critical-speed range by acting as a damping force to

reduce the rotor amplitude of motion.

7. The rotor may pass through the critical-speed region if proper

damping and balancing are obtained, but rotor speed cannot

exceed the stability threshold for the linear system. (The

author has observed instances in which the rotor passed through

the threshold and then returned to stable operation. No expla-

nation for this is available. This behavior cannot be explained

by linear theory).

8. In the linear system the rotor whirl orbit grows exponentially

above the threshold speed of stability. In order to develop a

finite whirl orbit above the threshold speed, the system must be
nonlinear.

9. The subcritical resonance at half the rotor critical speed that

sometimes occurs in heavy horizontal rotors is caused by gravi-

tational effects. Contrary to the analysis by Soderberg, this

motion remains bounded and can be easily damped out.

10. The introduction of a symmetrical flexible support into the

system will lower the rotor critical speed and also the rotor

stability threshold.

11. If external damping is incorporated into a flexible foundation,

the stability threshold may be greatly increased above its

original value.

12. There are certain combinations of foundation flexibility and

damping which will make the rotor completely stable for all

speeds.

13. There is an optimum value of foundation damping to promote

stability. Excessive damping causes a reduction in stability.

14. If the bearing or rotor cross-coupling terms are small, a large

increase in the stability threshold may be obtained by founda-

tion asymmetry alone without addition of external damping.

15. In the case of fluid film bearings with low-attitude angles, such

as the hydrostatic, tilting pad, or gas bearing at high compressi-

bility numbers, the stability characteristics may be greatly

improved by bearing asymmetry. For example, this would

indicate that the three-tilting pad bearing is preferable to the

four-pad bearing for stability.

219-720 O-fir--- I I
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16. When the self-excitation force component (normal to line of

centers) is large, such as in a fluid film bearing with a largd

attitude angle, the introduction of asymmetric foundation flexi-

bility will not improve the stability threshold, but may reduce

it. In this case external damping must be incorporated into

the foundation to raise the threshold.

17. The mass of the bearing has a considerable influence on the

rotor stability. If the bearing mass is large in comparison to the

rotor mass, there will be a reduction in the stability.

18. The stability of a fluid film bearing may be improved by raising

the bearing radial stiffness or reducing the bearing attitude angle.

19. The tilting pad bearing arrangement has excellent stability
characteristics because of its small attitude angle, but the price

one pays is poor attenuation in the critical-speed range.
20. Contrary to the analysis by Hagg, the tilting pad bearing will

support whirl instability under special circumstances.

21. The analysis of the stability threshold by the Routh method is

based on the perturbated equation of motion about an equilib-

rium configuration. The Routh method predicts the threshold

of stability, but furnishes no information on the degree of insta-

bility (growth rate of the positive real root).

22. The threshold of stability obtained by the Routh method does

not necessarily represent the limit of safe operation. In some

cases the motion may grow rapidly once the threshold is

exceeded (Fig. 44), but in other cases the rotor orbit may remain

small and grow only slightly with speed (Fig. 47). The upper

limit of safe operation may be considerably in excess of the

threshold value. This limit can be obtained only through a

nonlinear analysis.

23. The rigid or flexible rotor with ideal 360 ° incompressible fluid

film bearings (90 ° attitude angle) mounted on a rigid foundation

is unstable at all speeds because the system has zero radial

stiffness. This corresponds to the conclusions reached by

Reddi and others.

24. If the bearings in the above system have a partial (cavitated)

film, the rotor has a definite threshold speed because the bearing

attitude angle is below 90 ° and the journal has a finite radial
stiffness.

25. Lubricant compressibility increases the stability of a 360 ° gas

bearing by causing a reduction in the attitude angle.

26. At high compressibility numbers, the attitude angle goes to
zero; thus the rotor behaves as an undamped nonlinear spring-

mass system as A approaches infinity. Under these conditions

the regions of instability change to neutral stability.
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27.Other investigationshaveusuallyexcludedthe influenceof
frictionin bearingstabilityanalysesbecausethefrictiontermis
verysmallin comparisontothepressureterms. Thishasledto
theerroneousconclusionof instabilityat highA. If frictionis
includedin the analysis,themotionat highA becomescom-
pletelystable.



Appendix A

Shaft Internal Friction Characteristics

Nomenclature

8_(z)= shaft deflection at location z

tos= angular velocity of rotor = co

R_,= angular, velocity of rotating reference frame R'= rotor precession
speed _b

R,_s = angular velocity of shaft in relative reference frame R' = t_
•ro= shaft radius

z = axial shaft coordinate

p= radius of curvature

To include the internal damping phenomena for a rotating shaft, a
stress-strain relationship will be assumed in which the shaft fiber stress
is proportional to the rate of change of fiber strain in addition to the con-
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p

ventional term. In a manner similar to that assumed by Ehrich, Cm

the stress is given by

d_ (A.1)
crz = Eez + tti dt

where

for simple beam theory.

is given by

where

The strain at any point for a circular shaft

e_ = _o cos 0 (A.2)

d_8_ ro

e°=r° d_ p

The stress o'z for a rotating shaft is given by

o'z = ¢o E cos 0--/.*i sin 0 +/.ti _ cos 0 (A.3)

The bending moments acting at any cross section are given by

M_=ff A _r,r cos 0d,4 = f[ for (7o) [(eot + m_/_)r cos 0

] [  ,ol-- eo/_i sin 00 cos Or_drdO = I__ ¢oE + bei
ro dt J

(A.4)

M,=fL(rzr sin Od.4 =--(_o° ) g,IO
(A.5)

The radial force development per unit length is given by

(A.6)

and the tangential force per unit length is given by

(A.7)

where

b = OJ--_
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Note that the unit tangential force has the characteristics of a damping

.or a driving force depending upon whether the rotor precession speed

is greater or less than shaft speed o_.

Assume the rotor deflection may be represented by

8r(z) = 8, sin _ (A.8)
n=l

For the case of the single-mass rotor placed symmetrically along the

shaft axis, then the rotor deflection may be approximated by the first
mode.

The total radial and tangential force acting on the rotor mass is found

by integrating the characteristics along the shaft to obtain

(A.9)

where 8_= 8r = deflection of the rotor mass center.

Thus we can postulate a force system of the form

.._ -..). d Rt .._

F=K_8 +C_ -_(8) (A.10)

where:

K_ = rotor stiffness characteristics = E1

= internal friction coefficient = (L) aC_ gJ

It is of interest to mention the work by Dr. Howland on rotor whirl

in 1931. (aS_ Most of his article is devoted to an attempted explanation

of the whirl instability observed by Newkirk and the theory postulated
by Kimball on internal rotor friction as the cause of whirl. Howland

concludes that-

The results do not give support to Kimball's theory, and alternate explanations are sug-

gested. No final conclusion is reached. A much more elaborate analysis appears

to be needed before the conditions at speeds above fll can be dealt with adequately.

Dr. Howland, in his analysis, assumes a stress-strain relationship

of Filon and Jessop, and by assuming the usual Euler-Bernoulli assump-

tions arrives at the following simplified stress-strain relationship:

o'=EY +/.ty _(_) (A.11)
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Since yis much smaller than the radius of curvature p, the above relation-

ship is equivalent to Eq. (A.1).

Howland, in his derivation, does not consider general precessive

motion and hence does not arrive at the general form of the internal

friction force as stated in Eq. (A.10). At this point he stops and con-

cludes that although a normal shaft force is produced, as Kimball

first suggested, "the force can act continuously-only if there is a steady

force, such as the weight, to keep the shaft deflected-and the result

is only a slight permanent change of deflection."

Howland is correct in one aspect; that is, an initial rotor deflection

such as that caused by gravity or rotor unbalance is required to produce

the internal friction force required to initiate the whirl motion.

Dr. Robertson presented a rebuttal to Howland's paper in the follow-

ing year ¢35) in which he strongly refuted Howland's statements that

internal rotor friction could not possibly cause shaft instability.

Robertson states from experimental observation that-

Any accidental disturbance of the shaft from its position of equilibrium under the action
of the main whirling forces will produce a transient whirl which rotates at the critical

speed. When the shaft speed is higher than this the elastic hysteresis gives a driving

force maintaining this whirl, and if this force exceeds the friction opposing the transient

whirl that transient will grow until the shaft strikes the stops.

These observations of Robertson are in substantial agreement with the

statements by Newkirk in his paper on "Shaft Whipping."

Robertson, in his paper, draws strong objections to Howland's use of

the Filon and Jessop relationship, since experimental measurements have

shown that the internal friction force developed is independent of the

velocity of strain. He concludes that such an approach would produce

misleading results. Although Robertson is correct on this point, the

use of the Filon and Jessop relationship does not incur serious limitations.



Appendix B

Analog Computer Circuits of Rotor Motion

B.1 INTERNAL ROTOR FRICTION -- UGHT DAMPING

The approximate equations of motion for internal rotor friction are

given by Eq. (4.17)

d_X dX
=-- (/xx + Vx) _-- to N/gxgyY- to_xX + to2 cos totdt 2

d2y

dt 2

dY /-.--.

------ (/x_ + vy) _ + to X/g_/xxX -- toc2xy+ to2 sin tot + g (B.1)

where X and Y are dimensionless with respect to e_,.

Let t=flt7 and take the following scaling relationships:

aUX dzy

dz--T = t_32e32 dT 2 : tla4e34

dX dY
--=--/_lle12 _-3!-/_11e33
dT dT

----- t3_13e13

X=OLl2el2_--OLl2e31 Y_-o_14e14

The analog equations of motion become

e32 =-- P66e33 -- P24e12 -- P28e14 -4- P5e3

e34 = -- P62e3! -- P27e14 -- P70e35 -4- P3e2

where

. _11 2 _14
P_ = _t(tt_ + v_) --;

a32 P27 = _toctt a3--_4

f_o 2 CIQ2
P24 = PTtocx --,

0/32

,, CI_13

P7o _t(I-CU-4- Vy) _t3--_4

163
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/" _12

P2s =/3_(0 gg/-_g u a,____4; P82 =/3[00 v/_x/_
_1_32

P5 = 0.1000; P3 = 0.100

e3 ---- 100p6 cos t.o_tT; e2= 100 P3 sin to/3tr

8 x 10 .8
P8 = _ 602 P2 = P4 = 0.2toflt

0_32

For most of the cases run, the values of fit= 1 × 10 .3 and aij = 1.0

were used.

Since a number of the potentiometers are frequency dependent, this

requires changes in the pot setting with each speed change. Table B.1

represents the pot settings for a typical case study.

M-lb-secUin.
0.25

TABLE B.1.-Rotor conditions

Krlb/in•
250 000

D,-rad/sec
2O0

Dz-rad/sec
200

Run co Pzs, Psz P3, P5

K-lb/in. K4b/in.
250 000 125 000

P_, P4 P6

0.10O0 0.0200

.1154 .0266

•1300 .0338

.1412 .0399

•1500 .0449

•1600 •0512

•1800 •0648

.2000 .0800

.2900 .1682

•3000 .1800

.4000 .3200

.5000 .5000

.6000 .7200

.6400 .8190

.7000 .9810

l .........................

2 .........................

3 .........................

4 .........................

5 .........................

6 .........................

7 .........................

8 .........................

9 .........................

I0 .........................

lI .........................

12 .........................

I3 .........................

14 .........................

15 ..........................

0.0167

.0192

.0217

.0236

.0250

.0267

.03O0

.0333

.0483

.05O0

.0666

.0833

.1000

.1067

•1167

50O

577

650

706

750

800

900

1000

1450

1500

2000

2500

3000

3200

3500

0.1000

.1000

.1000

.I0O0

.1000

.1000

.1000

.1000

.1000

.1000

.1000

.1000

.1000

.1000

.1000

The analog computer circuit for this system is represented by Fig. B.1.

B.2 EQUATIONS OF MOTION INCLUDING ROTOR NONUNEARITY

The equations of motion of this system are similar to the system of
B.1, with the addition that nonlinear radial stiffness has been added and
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®

0.I000

165

FIGURE B.1.--Analog computer program I. Equations of motion for light damping with

internal rotor friction.

(A) Circuit for balanced rotor.

(B) Circuit for unbalanced rotor.

ea = + 100 P6 cos tofl_"

e2 = + 100 P6 sin oJfl_"
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the rotor stiffness and damping coefficients may be speed dependent.

These equations in general form are given by

=-- C_+ --_t -oo_[l +8(X2+ I_)]X-oo_uY+e._o2 cos cot

(B.2)

d2y f D---L] dY --co2[1 8(X2 A- Y_)]Y + to_X + etLat2sin tot

Scaling Relationships

t = _t_" .'.dt = fltd¢

dz X d_y
dt _ = a24e24; _ _-- a26e26

dX_ dy_
dt oL4e4; dt -- -- aces

X=ases; Y=aTe7

Substituting the above into Eq. (B.2) results in

[ D_] a5 f12to_[l+5(a25e_+a_Ce_)]e 5e24 = 0_4 Ct C_r -_- e4 a2--'_
0t24

2 2

a_ _a,_ye7 + e._ cos _,r
Oe24 O_24

as Bit C_ + e6 _ fl_to_[1 + $(a[e [ + a_e_) ]e7
e26 _ 0_26 0/26

+ a--_'_/3_o_e_+ _ cos co_,_"
0_26 0!26

(B.3)

The circuit voltage equations are given by

e24 = Pse4 - [25 P.,_Ps7P59 +0.0125P2_Pse (e_ + e})] es-- P.,._e7

+ 100 P43P5 cos ¢ofltr

e26 = Pl2ee- [25 P.,3P77P7s + 0.0125 P23P7e (e_+e;))] e7 + P.,oe._

+ 100 P4,P6 sin oJfl,r

General Pot Formulas

P5 = 0.01 ettto2fl_ p6 = 0.01 et,oJ2fl[
P41a26 P43az4

(B.4)
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P8 = °t4 _t [Cx +-_]; P12 = °t6 _t [cy + D_]• _24 _26

P2o = or5 _2xu; P22 = a'--L/3_to2x
O/26 OL24

_Mi3_to2_ _a_B_to_
P56- 1.25 a24P2/ P76 = 1.25 az6P23

P57 a5fl_to2x P77 = Ot7_O_to_
25 P21Pssot24' 25 P2aPTsot26

P21 = P23 = 0.4000

P41 = P43 = O. 1000

Pss = P7s = 0.1000

The analog computer circuit which represents Eq. (B.2) is shown in

Fig. B.2.

Example 1-Internal Rotor Friction and Nonlinear Shaft Stiffness

Consider the system represented by Eq. (4.46)

X + D_(, + k j[l + 8(X2+ p)]X- SY=et,to 2 cos tot /
(B.5)

_ + Dfi_+ k A1 + atX_+ r_)] r- sx= e_o_,sin tot

where

Dz

Df=(I+K_)2 [1+_]

K2K, ( K,_ 2
kf=to_a=M(K2 + K,) , S=toD2 \K_2]

Consider the following operating conditions

M = 0.25 lb-sec2/in.

K1 = K2 = 250 000 lb/in.

Dt = D2 = 200 rad/sec

e_, = 100 × 10 -e in.fin rotor unbalance

8=0.01 --0.1
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fit -= 1 × lO-3

,o

\----lit __-

(B)

FIGURE B.2.--Analog computer program lI. (A) Nonlinear circuit for balanced rotor.

(B) Rotor unbalanced circuit.
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a6 ---- 5.0 _26 = 5.0

P8 = PI2 =/_r-t0/6 Df = O. 100

0/26

P20=P22 = 0/.__5_S = 0.050(to x 10 -3)
0[26

P56 = P76 = 80/_13_kf = 3.658
0.01250/241021

P57 = P. = a5fl_kf =0.707
25P21Pss0/24

Figure 19 of Sec. 4.7 is an example of the above circuit and shows

the influence of small nonlinearity on the rotor motion at the threshold

of stability.

B.3 GENERAL EQUATIONS OF MOTION WITH INTERNAL ROTOR
DAMPING

The general equations of motion of Sec. 4.9.2 are given by

Let

d2X, 1 d2X2

dt 2 l+Sm dt 2 D_ _ --KzX_ + e,_o 2 cos tot
_td

d2X2 d2Xl

dt 2 dt 2

dX2

D2 _ -- D2toY._,-- K.zX2 + ettto 2 cos tot

d2yl 1 d2Y2 dYl
dt 2 -- l+Sm d/21 D,--_---KvY,+eg_o 2 sin oJt

d2y2 d2yl dY2

dt 2 -- dt 2 D2 -_- + D2mX2 - K2Y2 + egto 2 sin tot (B.6)

d2Xl d2X2
-- = 0/21 e21 -- _ 0/24e24dt dt 2

dXl dX2

dt = -- 0/4e4 --dt = -- aeee

XI _ 0/5e5 X2 = 0/7e7

d2y1 d2y2

dt 2 _ 0/27e27 dt 2 -- a29e29
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dY, dY2
dt 2 = -- ases --=--a_oe_odt

YI ---- age9 ]/2 _ allell

and t = ft_'.

Substitution of the above into the Eqs. (B.6) results in

e21 --
a24 1 a5 K m Dl
_1_21 ] + 8m e24 -- f2 e5 -_- fita21 ] + 8m a21 1 + 8m

e4

-_ _2 ett_2

azl ]-4-8m cos tarO"

a21 all a7

a24 a24 a24 a24

e o,2 cos
a24

e27 -_- a2 9 1 e29-- f_ a_ K e9 -4- fit
a_7 1 + 8m a27 1 + 8m

e8

+f_ e_t°2 sin ¢_ft'r
a27 1 + 8m

a27 all alo
e29 =-- e27--f_ -- K2eH + ft - D2elo + f_ a7 D2toe7

a29 a29 _1_29 a29

+ f_ e_to z sin _frr
0/29

(B.7)

Let all a's be equal to 1 and ft=0.001; then

e21_-._-

1 1 x 10 -_ K= 1 × 10 -a D_
1 + 8m e24 1 + 8m e54 1 + 8m

e4

1 × 10 -e etto_ 2

I+6m
COS OJ_tT

e24------e21- 1 X 10 -e D2toelt- 1 × 10 -_ Kze7 4-1 × 10 -s Dzee

+ 1 X 10-6 et, to2 cos for
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1 1 x 10 -e Ku 1 × 10 -a D_
e2_ = 1 + 8m e2a 1 + 8m e9 A- 1 + 6m es

171

1 × 10-Se_,to 2
-4

l+Sm

e29 =- e27-- 1 × 10-6K2el_ + 1 × 10-3D2e_o+ 1 x 10-6D2toe7

sin toflt'r

"4- 1 X i0-6et_to 2 sin toflrr (B.8)

e21 =-- P4se24 -- P,oe5 + Pse4 + lOOP6P4, cos toI3t7

e24 =- 5P42e21 -- P21etl -- Pl4e7-4- P_ze6 + 100PEP43 cos v0fl_

e27=-- P5se29--P,se_+ P_ees + 100P6P45 sin to_tr

e29=-e27-P22ell+P2oelo+P13e7+ 100P6P47 sin _flcr (B.9)

The analog computer circuit which represents the system of Eqs. (B.9)

is shown in Fig. B.3.

General Pot Formulas

P2 = P4 = 0.0002_

P8 _P16 _

1 × 10-3D1

1 ×6m

Plo = 1 × 10-6K_ P18 = 1 × 10-6Ky
(1 + _m) (1 × 6m)

P12 = P2o = 1 × 10-3D2

P_3 = P2t = 1 × 10-6Dg, o

P14---P22--_ 1 × 10-6K2

P41 -----P45 = 0.1250
1+8m

P43 =" P47 _" 0.1250

1

P4s = Pss = (1 + 8m)

P42 = P52 =" 0.2000

219-720 O-66--12
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(A)

e5

X2

@u

oo

3

2

FIGURE B.3.-Analog computer program lII. General equations of motion with internal

rotor damping.

(A) Circuit for balanced rotor.

(B) Circuit for unbalanced rotor.

es=+ lO0/)6 cos wflrr

e: = + 100 P, sin refits"



Appendix C

Digital Computer Program of Stability
Analysis Using the Routh Method
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AuTONATN ._YSTEM 02/10/65

eee soURCE PROGRAM LISTING ewe

lO0
TITLE STARLE

DINgNSION RR(20)*DD2(IO)*ALPHA(30)tDIilO),OMEGA(2S*IO)tWCX(2S)t

I 0(10)

C STABILITY ANALYSIS OF GENEmAL EIGHT ORDER SYSTEM USING THE 2

C RDUTH _ETHOD ° FnUR DEGREE OF FREEDON SYSTEM 3

C PROGRAMEO BY EeJ.GUNTER RUM NO,9

10 RFAD |IoKLUE S 1

It FORMAT (11) 6 2

GO TO (20,_O0)*KLUE ? 3

20 RFAD 21*NR,iRR(ll)eiIuIoNR) 8 4

21FORMATil2/(BFtO*3)) 9 S

C N(JNBER OF R VALUES NR FOLLOWS THE KLU[ CARD AND THE R VALUES ARE IO

C GIVEN ON THE NEXT CARD _ITH 8 FIELDS OF 10.3 11

RFAD 2ttND2tiDD2(JJ)_JJult_D2) 12 6

RFAD 21oNAtiALPHA(1).Iu|oNA)

RfAO 21tN_I,¢DI(J),JmI,NDI)

13 7

14 I

I_ 70 JJ xltND2 15 9

D2 sDO2lJ.I) 16 10

O0 60 It oItNR 17 11

P xRR(Ili 18 12

WCY nSORTFII.O/(|eO*_|) 19 13

WCROxIO00,O 14

AK2 uWCROe*2 |S

PRINT 190 191 l&

190 FORMAT(IHI// 30BISZH DATA OUTPUT STABILITY ANALYSIS//) IT

PRINT 191 tD2tRtliCY L91 11

191FORNATI|HOt25H ENTER DO LOOP 60 02 IFlO,3t SH R • FlO,st TH WCY 192 19

2 • PlO*3l

0Q 40 ImhNA 20 20

OO AO Jml_MOt 21 21

PRINT 211; D2,DI(J) iR*WCYI|tJ tALI_A(I) 2|00 22

211FORtLAT(1HO*2SH ENTER DO LOOP 40 U2 BFe,2,4Bt SH DI ,Fe,2,3B* 4H R 2110 23

I -FI.3eAB. 6H MCY • FTe3,AH Io|214H JuI2,4B,BHALPHA ( F7.3/)

KOUNT ol 22 24

KEY •1 ZS 2S

NP •OeO 24 26

V • 1000,0 2T



EPS uO,Ol

• 100 KOUNT sKOUN;r*I

DIGITAL COMPUTER PROGRAM

IF(KOUNT_ 20) 1011101.102

102 PRINT |O$,M,R,DZ*DI(J)*ALPHA(1)

103 FOlUlATtIHO//40,ISNKOuNT s20 W sEIO*3_4B,3HR sF6.2,4BtSH D2 sF6,1

I ,6R* 6H 01 • F7.21 60*8H ALPHA • F6.2 //)

GO TO 200

101 CONTINUE

WCX(1) sSORTF(ALPt'IA(tI/(RtALIII"IA(|)))

ZERO REARING MASS IS NOW SPECIFIED

DI4 •0,0

FO_ 8 DEGREE E_JATION ADD IF BRANCH HERE

AKY • AK2/R

AKX • ALPHAt|)'AKY

A • MCRO/D2

IYtOt(JII qo_qo,q§

9S D(J) *92/01(J)

90 CQNT|NUE

TI s D|(J) *_2

T2 : AKX * AKY

T3 • 2,0 •011J)*02

T4 s DI(J)mDI(J)

TS = D2 * 02

T6 : T4mTS

T? ffi TSmW_W

T• : AK2•AK2

T9 = AKXmAKY

a6 : TItTI

AS = ( 011J)-02)*(T2-2,0oAKZ) *6.O0011J),AK2*ZeOeO2•T2* TS*TI

A4 s T8 *AK2eT2 *T9 .TSm(WmN *TZ)*T3tI2.01AK2*TZ)*2.mT4OAK2÷T4oTS

AS = 2*O_l(J!eT7 *2.0eIDI(J)eTS*D2eT?)tTZ_I2,0eAK2*TI*D|(J)OT5)*

I 2.OeT4_D2IAK2

A? : TT*(T2*T4)*Z.O,AKZOT9* TSeT2 .T4eTS*TSeT9 *T3_TZeAKZ

AI : TTmDl(J!eT2 * 01(JIWT2OT8 *2.0eO2eAKZeTq

aO • T?eTq , TqeTB

AAS sAS/A6

Z6

2T

2O

29

30

31

32

33

34

35

36

37

38

41

42

43

431

t32

46

4500

4600

4700

4800

4900

SO00

5100

SZO0

5300

$300

175

:t$

29

30

31

3:t

33

36,

35

36

37

31

39

40

61

43

44

45

4s.

4?

4$

4,9

50

51

S:'

s4.oo

$600

5700

9800

5900

6000

50

6100

6ZOO

53

54

55

56

57

58

39
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AA_ aA4/A6 6300 60

AA3 sA3/A6 6400 6| •

AA2 8A2/A6 6500 6Z

AAI sAI/A6 6600 63

AAO sAO/Ah 6700 64

PRINT 651 ,A6,AS,A4*A3*A2*A|*AQsW*KOUNT 65

fi$l F_RMAT(IHO*_H A6 uEIO*_*4N A_u[|O.3*4H A4uEIOe3*4H A3sEIO.3.4H A2z 66

I EtOe3,SH AIsEIO.3*SH AOuElO,3 /4H NxElt,4oZO8, 7HKOUNT • I2/) 6701

IF(A6) 120m104,|04 66 67

104 CONTINUE 67 68

|F(AS) 120_105o105 66 69

105 C1 • AA4 _6A3/AA5 6gO0 TO

C2 • (AA2 _AAI/AA5)/C| 6910 T|

C3 • IAAO )1 C| 6920 72

PRINT 691 ,C1.C2.C3 6950 75

691FORNAT(IH t6H C1 • ElS,8*|SBt4HCE • EIS,A,ISB*4HC3 • E|S*8) 6940 74

IF(C1)120.106,106 TO 75

106 CONTINUE 7100 16

D118 AA3 *C2oAA5 TZflO 77

022 • (AAI-AAS*C$)/D11 TZIO 76

PRINT TZl.D|ItOZZ 7220 7q

?Z| FORNAT(|H *6H Dl| • EIS.8qlSBlSHD22 • EIS*e) 7250 80

771FORNAT(|H * 5H FI mE|S*8) 01

IF(D||) 120elOTe|O? T3 12

107 CONTINUE 7400 83

Et • CZ -D22 7500 84

E2 • C3 /FL 7520 05

PRINT 751, El,E2 7530 06

751FORNAT(tH ,5H [1 • ElS.O,lSB*SN[2 • ELSt8 ) 7540 O?

IFIEIt 120,100,108 76 O|

108 CONTINUE ?TO0 09

FI • DZZ-EZ TT20 90

PRINT 771 ,FI 91

61 • E2 TO00 $2

PRINT TT5,G| 7010 93

IF(F1) IZO,ILO,IIO 76 94

IlO IF(GI) LZO,llZ,l12 ?900 9S

775 FORNAT(IH ISH G| mE|ge8//) 7020 96

112 GO TO (132*134) lKEY 80 9T

L32 WP ,W 81 98

W • L,2aW 82 99

WCROA •|000.0 83 100

IFIW/_CROA .|00.0)|30,202,20Z 04 101
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130 60 TO 100

134 WP • W

W • (WP*WN)/2,0

TEST • SORTF((W*WP),*2)/W

PRINT 881,W,NPoWNoKOuNTtTEST

GO TO 140

t40 IF(TEST-EPS) 200o200,100

120 KEY • 2

WN • W

W s(WN*WP)/2.0

TEST • SORTF((N-WN)ei2)/W

PRINT 88|QW+NPtWNtKOuNTtTEST

881FORMAT(1HO+4H W sE|2.4+4BISH WP sE|2e_+SB,SH WN •EIZ.4,2OBo7HKOUNT

I • 12+5_o?H TEST eel2.4/)

GO TO 140

202 PRINT 205 *W*DM,R*D2_Dt{J)eALPHA(I|

203 FORMAT(/SSH THE SYSTEM IS STABLE FOR THE ROTOR CONDITIONS OF W •

|EtO.So SHD_ a F6.2o|SH R • K2/KY =F6e2* 6H D2 • F6.[ /6N 01zF6,|t

2 ?H ALPHAmF6e21/I)

OMEGA(|,.I) • 99.99

GO TO 40

200 OMEGA([,Jt'w /wCRO

40 CONTINUE

PRINT 300

300 FORMAT(|HI)

310 PRINT 311

31| FORMAT(IN ,IBB_B_ENERAL STABILITY OF A ROTOR 0N AN ELASTIC FoUN0

1ATZON WITH INTERNAL FRICTION DAMPING /I)

312 PRINT 313 ,DM,ReA*NCy

313 FORNAT(IHO+I2HOM • Ml/M2 ,F6,2110BoIIHR • K2/KY •F6.2110Bot3HA • N

ICRO/D2 mFTe2,10B*IOHwCY/WCRO uFbeS,bBi 9ftD • 02/015

314 PRINT 315

3|5 FORMAT(IHO eIISHALPt'IA NCX/WCRO DLsOeO0 D 0100.0 D • 10,O

1 O • S.O O = 2,0 0 • 1,0 D u 0.5 0 • 0.20 D ,0o105

DO 350 TaI_NA

PRINT 320,ALPHA(II+W_X(|)o(OMEGAiI*J)eJuloNDI)

320 FORMAT(IHO,Fb.2*IB*F6eS+4Be9(FIOe4oIB))

350 CONTINUE

PRINT 300

PRINT 311

PRINT 313 IDII*R,AIWCY

PRINT 360 * (D(J) tJm2_NDI)

360 FORMAT (IHO e31HALIWHA k_:x/wC_ Dlmo,o0 J 3( 2HDS Fb,I,2B)

85

n6

87

88

89

90

91

92

93

94

95

9520

9530

96

9T

98

100

101

102

1021

103

104

10S

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

12101

12102

12103

12104

12105

177

1.02

103"

10+

105

106

107

108

109

110

111

112

113

11#

llS

116

liT

118

119

120

121

122

123

124

125

126

127

lie

129

130

131

132

134

135

137

13e
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1 , 6( 3HO sFbeS.2BI) 12106

90 370 ! s|+NA 12107 139 "

370 PRINT 365 *ALPHA(1)tWCXII)t (O;4[GA(leJIeJmliNO|) 12108 140

36S FORNAT {lWOtF6eZ,lXtF6eSt6XIOIE11*4 )) 141

60 CONTINUE IZZ 142

70 CONTINUE 123 143

SO0 PRINT 600 12S1 144

600 FORNAT(IWII//2OBt|tH END OF RUN/|HI//) 145

STOP 12S$ 146

ENO 126 147
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Appendix D

Hydrodynamic Bearing Equations

D.1 DERIVATION OF THE GENERAL REYNOLDS EQUATION FOR AN

ISOTHERMAL COMPRESSIBLE FLUID

Consider the forces acting on a small volume element r.
tions of motion of the volume will be

JJe Dt JJs

The equa-

X3

][I

FIGURE D.1.--Forces acting on a small volume element.

Where

F = body force vector

_= traction vector = _rij v_ ni
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By employing Gauss's theorem Eq. (D.1) becomes

f f f [Lp. DuiOo'iJOXjFi]dT=0 (D.2)

Since the volume of integration is arbitrary, then

Let

Dui 0_ffU+Fi; i= 1, 2, 3 (D.3)
-=

_rij = -- PSij + _'ij (D.4)

where _'_j= viscous shear stresses.
If the fluid is assumed to be Newtonian, then the viscous shear

stresses are linearly related to the rate of shear strain. This is repre-

sented by

• ij = Cij ktEkl (D.5)

If the fluid is also isotropic, then the fourth-order tensor Cijkl is sym-

metric and invariant under coordinate transformation and is given by

Cijkl = _ij_kl "_- ft[_tk_jl -_- _il_jk] "4" y[_tk_jl- _il_j k] (D.6)

Hence the stress-strain rate for an isotropic Newtonian fluid is given by

Tij _- _ij A -}- 2/_ij

Where

X, g = Lam6 constants

_j = symmetric strain rate tensor

=_ [u_,j+u_,d

A = dilatation = e, = u_,_

(D.7)

Contraction of Eq. (D.7) results in

r. = [3k + 2p]A (D.8)

In the case of an incompressible fluid where the dilatation A is zero,
then the sum of the viscous normal stresses _'. is zero. If we assume

that _, will be zero even for a compressible mediam, then

3X + 2it = 0 (D.9)
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A.=-- 2/3V.

201

This is known as Stokes approximation and eliminates one of the Lam6

constants from the governing equations of motion. This approximation

has been shown to be true only for the case of a monatomic gas, but

usually results in only higher order deviations for most gases at normal

temperature and pressure. This assumption is invalid in regions where

large pressure or velocity gradients exist. As an example, the assump-

tion breaks down in the immediate vicinity of a supply orifice to an

externally pressurized bearing if a shock wave occurs.

(D.IO)

Therefore the equations of motion are:

Dui

P Dt (D.3, 4, 10)
OxiOP4-Fi + _O [ft(--_ Sijlgk, k3t- ui,j-4-1gj, i)]2 (D.11)

If the viscosity ft is not a function of the coordinates X, then Eq. (D.11)
reduces to

pDui OP 1
Dt =---_i-4-Fi+ft[-3 uj'ij+ui'jj] (D.12)

If the body forces Fi are zero, then Eq. (D.12) relates the inertia forces

to the rates of change of the hydrostatic pressure and viscous shear

stresses. The major assumption in the formulation of a lubrication

problem is that the flow is laminar. This is possible only if the inertia

terms of the left-hand side of Eq. (D.12) are small in comparison to the

viscous shear forces. This is equivalent to the statement that the
Reynolds number is less than 1

U 2

Inertia forces P --ff U L / h \ 2
R*--

Viscous forces _ -----ff = T

Where

R* = reduced Reynolds number

U = velocity

L = characteristic bearing length
h--characteristic film thickness

v = kinematic viscosity
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If

then
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R*_¢I

where

0P rl 3
=,,[?u,.,,+,,,.,,]

Assign for Xi and ui the following orders of magnitude:

X,=L u,=U

X2 = h u2 = 8U

X3 = L u3 = U

(D.13)

As an example, let i = 1, in Eq. (D.12)

aP
OXl=_.lb[l{ 02Ul . _2U2 . (_2U3 ___2U, l_02Ul 4 _2U, ]\_-f-_--t-aX---_-_,}-t-a--_-.-_- _ -_---_j (D.14)

It is seen that the term 02u_/OX_ is an order of magnitude higher than the

other terms. Hence, Eq. (D.13) reduces to:

OP O2u, (D.15)
axe- t, ax_

Likewise for i = 2 and 3

OP
-- = 0 (D. 16)
_X2

aP O_u3 (D.17)
OX3 = g OX|

For convenience let

Xi --X; ul = U

X2 = Y; U2 _" V

Xn=Z; us = W
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Equations (D.14-D.16) may be written as

0P 0Zu
_=_-_

203

(D.18)

(D.19)

OP 02W
_=/_ _ (D.20)

Since OP/OY_D_8iO, the fluid film pressure may be considered as uniform
across the film thickness. Equations (D.17) and (D.19) may be inte-
grated directly and upon application of the following boundary conditions:

y = 0 u(0) = U,; W(0) = W,

y=h u(h)=U_; W(h)=W_

(where h = h(X,z,t) is the film thickness distribution)

1
(D.21)

2_ -_ [Y--h] Y+IV_ + W2Yh (D.22)

Equations (D.20) and (D.21) are insufficient to formulate the lubrication
problem. Another relationship is required. This is the continuity
equation which is the statement of the conservation of mass in an
elemental volume and is given by

0p + =0
Ot OX 0 Y OZ

(D.23)

If we assume a compressible isothermal fluid film which obeys the
perfect gas laws, then

P=oqdp

and Eq. (D.23) becomes:

219-7200-66--14

0(et0 =-- [0P+ O(Pu) + O(PV/)]
0Y L-_ _ _J (D.24)
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Integrate Eq. (D.23) across the fluid film

y=h

PvI= 1dy (D.25)L_ _ -Vfj
yffi0

In order to perform the above integration, it is necessary to place the

derivatives with respect to X and Z outside the integration sign. To

accomplish this we will use the Leibniz rule for differentiating under the

integral sign when the limits of integration are a function of the current
variable itself. If

then

Hence:

Thus:

and

D_(x)

l(fl(x), t_(x), X) =J_z) f(x,y) dy

dl 0I+ Ol (_X)

dl=f_x) Ofdy+f [ _ I O°ldX J o_x) OX OX - f
tt=_(x) tt=a(x)

(D.26)

-_ (Pu)dy =---_ Pudy + Pu -_
y=h

fho_(PW)dy---_f _ PWdyA-PW[ Oh
y=h

(D.27)

After integrating Eq. (D.25) using the velocity profiles and rearranging

0 0 0P _2p 2 0Ph
1---[O-_(Pha-_xP)+-_(ph3-_)]- (V2 -- VI) Jr- 0t6g

+h -_-x[P(U2+U,)]+ [P(W2+W,)I +P(U,-U.,)-_-X

Oh
+ P(W_ -- W2) _-_ (D.28)

The above equation represents the general three-dimensional Reynolds

equation as applied to an isothermal compressible fluid film.
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D.2 DISCUSSION OF ASSUMPTIONS INVOLVED IN THE DERIVATION OF

REYNOLDS EQUATION

The derivation of Reynolds equation as applied to a compressible

isothermal fluid film proceeds from the consideration of the sum of the

inertia, body forces, and tractions acting over a volume of fluid. By

means of Gauss' theorem, the surface traction integral is converted

to a volume integral to obtain the partial differential equations as applied

to an infinitesimal element. The first assumption employed is:

(a) The fluid is Newtonian.

This implies that the fluid properties are invariant (isotropic) or unchang-

ing in any direction _nd also that the stress tensor is linearly related to
the strain rate tensor. (For fluids such as greases, the stress-strain rate

is not linear at low shear rates and hence the media is non-Newtonian.)

By assuming a linear stress-strain, rate relationship, two Lam6 con-

stants are required to express the viscous shear stress in terms of shear

strain rate (as an example, in solid mechanics these two constants are

usually expressed in terms of E, Young's modulus, and v, Poisson's ratio,

or E and G = the shear modulus). The constants appearing in Eq. (D.7)

are k and t_ the fluid viscosity. For the case of an incompressible fluid,
the second Lam6 constant _, does not enter into the equations, since the

dilatation is zero (see Eq. (D.8)). In order to remove _, it is assumed
that-

(b) The bulk modulus (3X + 2it) = 0.

By this means we are able to express _ in terms of g. This is known as

Stokes approximation, and thus the pressure P is independent of the

dilatation. This assumption has shown to be valid only for a monatomic

gas in which higher order molecular collisions are neglected and the

gas is not an extreme pressure condition. In the normal gas bearing

application, where the flow is laminar, the dilatation A is small and only

secondary errors accrue. The assumption is invalid in regions where

there are high velocity or pressure gradients. Such regions would

"be at the leading or trailing edge of a partial journal bearing where high-

velocity gradients exist. Another region in which the assumption breaks

down is in the immediate vicinity of a supply orifice for an externally

pressurized bearing. In this case it is possible to have a local shock

front formed downstream, and associated with it would be high-pressure

gradients.

Equation (D.12) is usually referred to as the Navier-Stokes equations

and represents three highly nonlinear partial differential equations.

As such, no general solutions are available for Eq. (D.12) in its present
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form. To reduce the complexity of Eq. (D.12), the following assumptions

are made:

(c) The effect of the body forces F_ are negligible.

For fluid film bearings with the body forces due to gravity only, this is

true. In the case where the body forces are exerted by magnetic effects

(magnetohydrodynamics), the forces Fi can be sizable. The key assump-

tion in reducing the complexity of the general Navier-Stokes equations

in the derivation Reynolds equation is the assumption that the flow is

laminar viscous and the inertia effects are small in comparison to the
viscous shear forces.

This assumption is equivalent to the statement that

(d) The reduced Reynolds number R* is much less than unity.

This permits us to set the left-hand side ofEq. (D.12) equal to zero. To

demonstrate the validity of statement (d), the reduced Reynolds number

will be calculated for a typical gas bearing.

Example

The effective Reynolds number must be less than one for the Reynolds

equation to be valid, or

where

R*_I

R*=T

The effective Reynolds number will be calculated corresponding to

typical operating conditions of a pivoted pad gas bearing experimental

test rotor:

N = 18 000 rpm
R = radius of rotor = 2 in.

U = _- N = 3768 in./sec

it= 2.61 × 10-9 lb-sec/in. 2

P= 14.7 psia
T = 7O° F

P

P gRT 1.1 × 10 -7 lb-sec2/in. 4

h = 0.001 in. = average shoe film thickness

t, = -g = 2.38 x 10 -2
P
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L = Ra = 3.3 in.

R,_(3.768) (3.3) (1 X lO-3_z=4.72 × 10 -2
2.38× 10 -2 3.3 /

or

Re*---0.05

Thus the assumption that the inertia terms are small in comparison

to the viscous shear forces is valid and hence may be neglected in the

range of operation considered. It has been pointed out by Constan-

tinescu and Gross that in cases where R* exceeds 1, the error induced

by neglecting the contribution of the inertia terms is still small, acting

so as to increase the bearing load capacity and friction losses.

D.3 DERIVATION OF FILM THICKNESS BETWEEN JOURNAL AND BEARING

Consider the triangle Oh, R, Oj of Fig. D.2

R - er
cos Y = R + C - h (D.29)

where

er=e cos (8-6--T)
h = bearing film thickness

If C/R _ 1, then:

(a) cos 3' _ 1.0

(b) er _- e cos (8--_b)

Equation (D.29) becomes

Solving for h (8)

R -- e cos (O-- _b)
1.0 = R + C - h (O) (D.30)

h(O)=C [1 +_ cos (0--6)]

where

-- eccentricity ratio = e/C

÷
Let the eccentricity vector e be given by

e= ee_=--Xn_+Yny

Taking the dot product of Eq. (D.32) with respect to nx and n U

(--X ,x+ n.)

(D.31)

(D.32)
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Iny

BEARING JOURNAL

FIGURE D.2.- Bearing geometry.

Ino

yields

(a) -e sin _b=X

(b) e cos d_= Y

The film thickness in terms of Cartesian coordinates is given by

h (0) = C + Y cos 0 + X sin 0
(D.31, D.33)

(D.33)
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D.4 KINEMATICS

D.4.1 Journal Motion

The velocity of an arbitrary point S on the journal surface in reference

frame R is given by

R_S R:-_.O:,IO, R--*S/Oj

V = V + V (D.34)

where

R = reference frame fixed in bearing
R_OjlOt,

V = velocity of journal center Oj relative to bearing Os in R
R_SIOj

V = velocity of point S relative to the journal center Oj in R

R_OIOs Rd _ ._
V = _ [eer] = eer + Riot' × (e'er)

where

RtOR = angular velocity of rotating reference frame R' in R
• --_

= 6nz = precession or whirl speed
R_OjlOs . _) . _)

V = eer + e6e,b

-..q, .-).

transforming to the nr, no vector set

R--'_OjIOs

V =-- [e cos (0-- _b)+ e_ sin (0-- _b)]_r

+ [e sin (0 -- q_)-- e_ cos (0-- _b)] no (D.35)

If the journal eccentricity is expressed in Cartesian coordinates, then

the velocity of the journal center is

R_oj/o, nr + [Y sin 0-._ cos 0l no (D.36)V =-- [._ sin 0 + _" cos 01-_ " ->

The velocity of point S relative to O is given by

R--*SIO_ R '--*SlOj .._

V = V +R_'Xo_PS

where

_a¢= angular velocity of journal in rotating reference frame R'

R'--* SIO_ R' ""_ -
V = o_nz 7, (Rn_)

= R'o_Rn _
R_SIOj

V = (_ +"'o_)Rno = %_R_ (D.37)
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The total velocity of point S in R is given by

R-'*S -')

V =--[e cos (0--6)+e_ sin (0--_b)]nr

+[e sin (0--6)--e_ cos (0-_b)]no+%CRn_

or

_s =-- [j_ sin 0 + I/cos O]n_ + [I/sin0

-- ,_ cos O]no + n_Rno

The nb unit vector is given by

-4. ---) "-_

n_= cos "/no+ sin ynr

now, consider triangle Oj, Oo, S

e sin (0- ch- y)
sin 3,= R+C-h

if C/R _ 1.0, then y "_ 1.0

Hence

sin "/= y
e sin (0--cb)

R

Since

hence

h=C+e cos (0-6)

Oh
-- e sin (0--_b)

00

_ 1 Oh-*
no = no---_ "_ nr

(D.38)

(D.39)

(D.40)

The total velocity of point S in R is given by

Oh1 -*RVS(D.ST?D.39) -- X sin O+ I;"cos o+n_  ln,

+ [_" sin 0 --X cos 0 + R So_l n_ (D.41)



HYDRODYNAMIC BEARING EQUATIONS

= -- cos (0 -- _b)+ e_ sin (0-- 6) + so) Oh
(D.37, D.39) . nr
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+[e sin (0--6)--e_ cos (0--4_)+Rco]_

Differentiating Eq. (D.31)

_" = e cos (0-- 6) + e sin (0-- _b

• Oh
=e eos to-4_)-_-_

•.¢ _ rdh,_ j Oh] r _ loh_l

(D.42)

(D.43)

The velocity of point S in a Newtonian reference frame is given by

N--_S N--_SIO_ N--_Ob

V=V +V
where

N--_06

V = velocity of bearing center

= Xo nx + Y0 nv

N--*S N_Ob _SlO Ob"-_Sv = v + %_"x P

where NO_ = OJb : bearing angular speed in Newtonian reference frame

(D_2)A'on_ -4- Yo n'_u -4- [(NtoR +RcoJ)R

j,

r dh s . Oh]
dtd(Oh'_]\OO]J_--[_-+ tnJ_-_] n_ (D.44)

N-* E 2 --'It" °V = onx+Yo_y+(R+C)Urnnno

->

=(Xo cos O+Yo sin O)n,-

+(--J(o sin O+Yo cos O+(R+C)No_) no (D.45)

The journal-bearing velocity components are given by

U2=-Xo sin O+Yo cos O+(R+C)_o

U,=--J_o sin O+Xo cos O+Rooj--'_ _-_
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V2 =Jr0 cos 0+ Y0 sin 0

=_rd,,+V, Rra.,

W2= W j--0

Substituting the above velocity components into Eq. (D.28) and after
eliminating higher order terms, h/R, C/R, Xo/Rra, Yo/R_ results in the

following dimensionless Reynolds equation

(D.46)
where

P = dimensionless pressure =p/Pa

Pa = ambient pressure

6/_(ra_ + rab)
A = compressibility parameter = p_ (R) 2

H = dimensionless film thickness = h/C

L = hearing width

= dimensionless width = Z/L

o'=squeeze film number= Pa \C]

¢ = dimensionless time = tf

f= system characteristic frequency

To obtain the form of the Reynolds equation with respect to the ro-

tating reference frame R', we transform the time derivative of pressure
as follows

ROP= R'OP +_ b OP
Ot Ot "_

and substitute the above into Eq. (D.45) to obtain

0 2+ °(P 1
0 (pH3OP_= A [2 a'

(D.47)

where

H=l+_cos0

ra = raj+ rab
T' = rat

Examination of Eqs. (D.46) and (D.47) shows that the form of the

pressure equation depends upon the system of coordinates used. For
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example, if the rotor motion is stable synchronous precession in which

e is constant (vertical rotor), the time-transient term of Eq. (D.46) ex-

pressed in fixed coordinates is nonzero, but the transient pressure term

of Eq. (D.47) expressed in the relative reference frame R' is zero.

The influence of compressibility can be neglected only when both the

compressibility number A and squeeze film number o" approach zero.

In this case Eq. (D.47) reduces to

0 /H OP\ (R_20--(H3OP_ A

which represents the governing Reynolds equation for an incompressible

fluid.

D.5 BEARING FRICTION

The friction shear stress acting on the rotating journal is given by

Ou I (D.49)
T _" I'i"'_Y y=h

10P

u(y) = 2/xR 00 y(y- h) + _ (Rto + e sin 0 - _be cos 0)

h 0P
.'.T=-2-_ O0 t-_ [Rto-_be cos 0+e sin 0] (D.50)

The first term in the above expression represents the shear stress

contribution due to pressure profile drag and the second term represents

the velocity drag. An order of magnitude analysis shows that the pres-

sure profile drag may be neglected in comparison to the velocity drag:

_ g (_R) to [1 + (C)2 (g-_)]

Typical values for a gas bearing are

D = 2 in. /_ = 2.51 × 10 -6 lb-sec/in. 2

C=0.001 in. oJ= 1000 rad/sec

IV = 50 lb

r_/x to 1-t- (2.51 x 10_e)l x 10a

_f[1 + 0.02]



214 DYNAMIC STABILITY OF ROTOR-BEARING SYSTEMS

Reference 28 shows that neglecting the shear contribution of the pres-

sure gradient term will cause at most only a 10-percent error in the
friction force

"o[ ].'._'=N_ 1+ (_sinO--_cosO)

Thus since C/R -_ 1 x 10 -s, the journal friction is relatively independ-

ent of the precession rate. The net shear force component acting normal

to the journal-bearing line of centers is given by

foLfo 2_°uFN = ft _y cos ORdOdz

= fo2 cosOdOC 1 + ¢ cos 0 (D.51)

To integrate the above expression consider the following. Let

Z = e i° cos 0 _---
z+z-'

dO =- idz/z

f_" dO -if 2dz i2_ dzl+Ecos 0 z[2+_(z+z-')] _ (z--zO(z--z._)

where the roots zt and zz are given by

zl =-- 1+
E

Z2=--_

The root z_ lies inside the unit circle and hence the integral is singular

when z = zl. The value of the integral is given by

_ flz)dz 2rri _. Res

Where the residue for a simple pole is given by

(Z--Zi)f(z) z z, == 21"k/T-S_-_z

.'. = 2rri -- = (D.52)
1+¢ cos 0 2 X/1--¢ z
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The bearing normal friction, force then is given by

215

FN t_R2Lc°f2'_ i I1 1 ]=---_-Jo _ 1 + • cos O dO

- /xR2L°j 2_"[ 1 __2),/2]¢D.n,s2) C • (1 (D.53)

Under normal steady-state conditions, the bearing friction force is
neglected in comparison to the hydrodynamic bearing force in the

determination of the journal equilibrium position. There are special
circumstances in which the bearing friction force is not negligible, such
as when • approaches unity, then FN approaches infinity, and when the

journal precession rate _ approaches half the rotor speed. In this case

the pressure forces approach zero as _ approaches oJ/2. Hence the

friction force can be of the same order of magnitude as the hydrodynamic
forces under these circumstances.



Appendix E

Nomenclature

Symbol

A

A
A

Ab

B

C
C

Cij

Cijkt
CxCv
C1
C2
D
D

Dl

D2
E

eft

F

f

g
gr

Definition

Amplification factor, dim.
¢OCno/D2,Internal rotor friction factor, dim.
Complex amplitude of limit cycle, dim.

Rotor amplification factor for backward synchro-
nous precession, dim.

Rotor amplification factor for forward synchro-
nous precession, dim.
Amplitude of half-frequency whirl component,
dim.

Damping coefficient, lb-sec/in
Radial clearance, in.

Generalized damping coefficients, dim.
Fourth-order tensor

Foundation damping in x,y direction, lb-sec/in

Foundation damping coefficient, lb-sec/in
Internal friction coefficient, lb-sec/in
1/A Inverse amplification factor, dim.
D2/D1, Damping ratio, dim.

C_/m,,, External damping factor, rad/sec
C2/m2, Internal damping factor, rad/sec
Young's modulus, lb/in 2
Displacement of rotor mass center from shaft
elastic centerline, in.

Force, lbs
Generalized force

_orce vector, lbs
_/¢oCR,Frequency ratio, dim.

Radial force per unit length, lbs/in
Tangential force per unit length, lb/in
Acceleration due to gravity, in/sec 2
Generalized coordinate

217
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Symbol

H

h

I

K

Ko
Kr

Ks
K_:

K_

KI

K2

X_j
k

L

L

L

M,m

MR

Mi

M2

Film thickness, dim.

Film thickness, in.

Definition

nl

n2

n

o

P

P

Pa

P

qr
R'

R

R

R

Re

r

Moment of inertia, lb-sec Z-in

Stiffness coefficient, lb/in

Generalized stiffness coefficients, lb/in

Rotor stiffness characteristic, lb/in

c/m, Damping factor, rad/sec

Foundation flexibility in x-direction, lb/in

Foundation flexibility in y-direction, lb/in

Foundation stiffness, lb/in

Rotor stiffness, lb/in

Kij/m, radZ/sec 2

Radius of gyration, in.

to_a, rad/sec 2

Rotor length, in.

T-V, Lagrangian

Bearing width, in.

Rotor mass, lb-sec2/in

Bending moment, in-lbs

Bearing housing mass, lb-sec2/in

Rotor mass, lb-secZ/in

/ \R z
D, {_I---+-R)' Stationary damping coefficient of

_ g

bearing support
/\1 2

D2_l---_ ) , Rotating damping coefficient of

shaft unit vector

Unit vector

Subscript

Real part of complex number, exponent governing

system stability

Pressure, dim.

Ambient pressure, lb/in 2

Potentiometer settings
Position vector

Generalized coordinate

Rotating reference frame with angular velocity to
Fixed reference frame

K2/Ky, stiffness ratio, dim.
Radius of rotor, in.

Reynolds number

Displacement of rotor mass center from steady-

state position, in.



Symbol
r

ro

S
T
T

T
t

U

V

V,,
W

X

Xo
XI
X2
Y

Iio
YI
Y,
Z
ot

ot

8

_b

8m

8r
8st

E,E_

E

EU

A

k

_I/,y
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Definition

Subscript
Shaft radius, in.

Imaginary root
Kinetic energy, in-lbs
Kinetic energy, in-lbs
Rotor drive torque, in-lbs
Time, sec

Velocity, in/sec
Potential energy, in-lbs

Velocity of mass center, in/sec
Rotor weight, lbs
Horizontal coordinate

Equilibrium coordinate
Horizontal foundation deflection, in

Horizontal shaft deflection, in
Vertical coordinate

Equilibrium coordinate
Vertical foundation deflection, in
Vertical shaft deflection, in
X + iY, Complex rotor deflection

Kx/Ku, Foundation flexibility ratio, dim.
Nonlinear stiffness coefficient

Phase angle, deg
Deflection of shaft centerline from bearing line of

centers, in.
Deflection of bearing center, in.

ml/m_, Mass ratio, dim.
Deflection of elastic center from bearing center, in.
Rotor static deflection, in

Displacement of rotor mass center from shaft
elastic centerline, in
Eccentricity ratio e/c, dim.
Strain tensor

Bearing width, dim.
Moment of inertia, lb-sec2-in

_-_a(R/C)2, Compressibility parameter, dim

P + i_, Complex root
Absolute viscosity, lb-sec/in 2

ot 2

Dz (c----_-_), Coe fficient , rad/see

1 2
D2 (1--_-_-), Coe fficient, tad/see

Kinematic viscosity

219-720 0-66--15
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Symbol

vx

/2y

o"

o'/j

O'z

6
£t

60

toby

tOcf

{DCR

60CRo

DYNAMIC STABILITY OF ROTOR-BEARING SYSTEMS

Definition
ol 2

DI (---_), Coemcient, rad/sec

R z
D, (_), Coefficient, tad/see

Squeeze film number
Stress tensor

Stress, lb/in _

Precession angle, deg

Angular velocity, rad/sec

Rotor angular velocity, rad/sec

Critical speed for backward precession, rad/sec

Critical speed for forward precession, rad/sec

Rotor critical speed, rad/sec

Rotor natural resonance frequency on rigid sup-

ports, rad/sec

tocx Natural system resonance frequency for X-direc-

tion, rad/sec

tocy Natural system resonance frequency for Y-direc-
tion, rad/sec

toj, Rotor precession speed, rad/sec

cos Rotor stability threshold speed, rad/sec
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Amplification factor. 51.54

Critical, 40

Analog computer. 62. 133, 72, 112

Bearing. asymmetric, 74

externally pressurized gas, 37

fluid film. 31

hydrodynamic. 19, 21. 128. 133

pivoted pad. 54

rolling element. 31

symmetric. 57

thrust load. 15

Coriolis force, 7. 34

Couphng:

cross. 54. 123. 125. 132

flexible, 44

rigid,44
Critical speed. 1.7, 13, 16, 17. 18, 22. 30. 40

secondary. 31.33

Damping:

external. 43, 48

internal, 43

rotary force. 16

rotating coefficient. 61

stationary coefficient. 61

unsymmetric, 51. 127

Deflection, static. 33

Dilatation, 200

Dissipation function. 41.97

Eccentricity:

bearing, 129

shaft, 31. 131

Elliptic orbits. 54

Equilibrium:

indifferent, 7

neutral, 7

Film thickness. 201

Foundation flexibility. 15. 18, 20, 48, 58, 84

Gauss' theorem. 200

Generalized coordinates. 26

Generalized forces. 27

Harmonics. one-fifth. 92

Jeffcott model, 9

Kinetic energy, 26. 97

Lagrange's equation. 27. 98

Lagrangian. 27

Lam6 constants. 200

Laminar flow. 201

Limit cycles. 72. 136

Mathieu equation, 34

Misahnement. 32

Modes, conical, 40

Mohr circle, 126

Natural frequency, lateral, 8

Navier-Stokes equation. 206

Newtonian fluid. 200

Noneonservative system. 41

Oil whip. 17

Phase angle. 11.40

Potential energy. 27

Precession:

backward. 14, 52

forward. 14. 52. 61

nonsynchronous. 9. 35

rate, 59. 61. 103

synchronous. 9. 28

Routh stabihty criterion. 105

Routh-Hurwitz criterion. 55. 105. 124

Reynolds:

equation. 205

number. 201

Rotor:

flexible. 8

sag. 34

whipping, 14

Shrink fits. 44

Stability criterion. 55.60

Stiffness, 13

nonlinear. 23. 72. 134

Stokes approximation, 201

Strain, 159

Stress:

hysteresis, 15

reversal cycles. 15

shaft. 159
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Stress - Continued

viscous shear, 200

Subcritical speed, 34

region, 94

Synchronous motion, 9

Torque, 28

Unbalance, 9

Viscosity, 201

STABILITY OF ROTOR-BEARING SYSTEMS

Whirl, amplitude, 14, 73

definition, 9

fractional frequency, 131

oil film, 23, 133

ratio, 61, 92, 117

self-excited, 16, 24

synchronous, 91

transient, 63, 67, 91
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